Loading…
Bivariate Detection based Dual-Mode Metal Object Detection System for Wireless EV Charging
Metal object detection (MOD) technology is crucial to drive the commercialization of wireless electric vehicle (EV) charging. Previous detection coil-based MOD methods mainly detect metallic foreign objects by the variation of sampling voltage, which may mistake nonmetallic foreign objects for threa...
Saved in:
Published in: | IEEE journal of emerging and selected topics in power electronics 2024-08, p.1-1 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | IEEE journal of emerging and selected topics in power electronics |
container_volume | |
creator | Yang, Ziyue Xia, Chenyang Sun, Anran Zhao, Shuze Cao, Yuheng |
description | Metal object detection (MOD) technology is crucial to drive the commercialization of wireless electric vehicle (EV) charging. Previous detection coil-based MOD methods mainly detect metallic foreign objects by the variation of sampling voltage, which may mistake nonmetallic foreign objects for threats. To solve this problem, this paper proposes a bivariate detection based dual-mode MOD system integrating time-division multiplexing (TDM) mode for sensitively detecting foreign objects and frequency-swept resonance (FSR) mode for accurately identifying metallic foreign objects. Firstly, by modeling foreign objects and resonant circuits, it is observed that metallic objects increase the resonant frequency and decrease the sampling voltage at resonant frequencies. Subsequently, the specifications of the detection coil and the intrinsic resonant frequency of the resonant circuit are optimized to enhance the sensitivity of the MOD system. Finally, an experimental platform with an output power of 3.3 kW is built to verify the effectiveness of the MOD system. The experimental results show that the TMD and FSR modes of the MOD system can accurately detect and recognize metallic objects. Furthermore, the TDM mode of the MOD system can achieve 100% probability of detecting all types of coins and 78% probability of detecting 29 mm paper clips through 100 random drop tests. |
doi_str_mv | 10.1109/JESTPE.2024.3452186 |
format | article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10659903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10659903</ieee_id><sourcerecordid>10_1109_JESTPE_2024_3452186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c653-49faf7d392c1d5d284d16dbb4825f4920365eaa706b2403583deee9612bf7b5c3</originalsourceid><addsrcrecordid>eNpNkNtKAzEQhoMoWLRPoBd5ga05bE6X2q4nWiq0KHizJJtJ3bLtSrIKfXu3tEjnZgZmvp_hQ-iGkhGlxNy9FovlWzFihOUjngtGtTxDA0alzqTS4vx_VuoSDVNak740E0bpAfp8qH9trG0HeAIdVF3dbrGzCTye_Ngmm7Ue8Aw62-C5W_f7k7PFLnWwwaGN-KOO0EBKuHjH4y8bV_V2dY0ugm0SDI_9Ci0fi-X4OZvOn17G99OskoJnuQk2KM8Nq6gXnuncU-mdy_sPQ24Y4VKAtYpIx3LCheYeAIykzAXlRMWvED_EVrFNKUIov2O9sXFXUlLuBZUHQeVeUHkU1FO3B6ru004IKYwhnP8BJeNiLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bivariate Detection based Dual-Mode Metal Object Detection System for Wireless EV Charging</title><source>IEEE Xplore (Online service)</source><creator>Yang, Ziyue ; Xia, Chenyang ; Sun, Anran ; Zhao, Shuze ; Cao, Yuheng</creator><creatorcontrib>Yang, Ziyue ; Xia, Chenyang ; Sun, Anran ; Zhao, Shuze ; Cao, Yuheng</creatorcontrib><description>Metal object detection (MOD) technology is crucial to drive the commercialization of wireless electric vehicle (EV) charging. Previous detection coil-based MOD methods mainly detect metallic foreign objects by the variation of sampling voltage, which may mistake nonmetallic foreign objects for threats. To solve this problem, this paper proposes a bivariate detection based dual-mode MOD system integrating time-division multiplexing (TDM) mode for sensitively detecting foreign objects and frequency-swept resonance (FSR) mode for accurately identifying metallic foreign objects. Firstly, by modeling foreign objects and resonant circuits, it is observed that metallic objects increase the resonant frequency and decrease the sampling voltage at resonant frequencies. Subsequently, the specifications of the detection coil and the intrinsic resonant frequency of the resonant circuit are optimized to enhance the sensitivity of the MOD system. Finally, an experimental platform with an output power of 3.3 kW is built to verify the effectiveness of the MOD system. The experimental results show that the TMD and FSR modes of the MOD system can accurately detect and recognize metallic objects. Furthermore, the TDM mode of the MOD system can achieve 100% probability of detecting all types of coins and 78% probability of detecting 29 mm paper clips through 100 random drop tests.</description><identifier>ISSN: 2168-6777</identifier><identifier>EISSN: 2168-6785</identifier><identifier>DOI: 10.1109/JESTPE.2024.3452186</identifier><identifier>CODEN: IJESN2</identifier><language>eng</language><publisher>IEEE</publisher><subject>Coils ; Electric vehicle ; Equivalent circuits ; Frequency modulation ; Impedance ; Integrated circuit modeling ; metal object detection ; RLC circuits ; Voltage ; wireless EV charging ; wireless power transfer</subject><ispartof>IEEE journal of emerging and selected topics in power electronics, 2024-08, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8041-7938 ; 0009-0005-1130-5920 ; 0009-0009-4554-6094 ; 0009-0001-5965-5103 ; 0000-0003-0867-9487</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10659903$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Yang, Ziyue</creatorcontrib><creatorcontrib>Xia, Chenyang</creatorcontrib><creatorcontrib>Sun, Anran</creatorcontrib><creatorcontrib>Zhao, Shuze</creatorcontrib><creatorcontrib>Cao, Yuheng</creatorcontrib><title>Bivariate Detection based Dual-Mode Metal Object Detection System for Wireless EV Charging</title><title>IEEE journal of emerging and selected topics in power electronics</title><addtitle>JESTPE</addtitle><description>Metal object detection (MOD) technology is crucial to drive the commercialization of wireless electric vehicle (EV) charging. Previous detection coil-based MOD methods mainly detect metallic foreign objects by the variation of sampling voltage, which may mistake nonmetallic foreign objects for threats. To solve this problem, this paper proposes a bivariate detection based dual-mode MOD system integrating time-division multiplexing (TDM) mode for sensitively detecting foreign objects and frequency-swept resonance (FSR) mode for accurately identifying metallic foreign objects. Firstly, by modeling foreign objects and resonant circuits, it is observed that metallic objects increase the resonant frequency and decrease the sampling voltage at resonant frequencies. Subsequently, the specifications of the detection coil and the intrinsic resonant frequency of the resonant circuit are optimized to enhance the sensitivity of the MOD system. Finally, an experimental platform with an output power of 3.3 kW is built to verify the effectiveness of the MOD system. The experimental results show that the TMD and FSR modes of the MOD system can accurately detect and recognize metallic objects. Furthermore, the TDM mode of the MOD system can achieve 100% probability of detecting all types of coins and 78% probability of detecting 29 mm paper clips through 100 random drop tests.</description><subject>Coils</subject><subject>Electric vehicle</subject><subject>Equivalent circuits</subject><subject>Frequency modulation</subject><subject>Impedance</subject><subject>Integrated circuit modeling</subject><subject>metal object detection</subject><subject>RLC circuits</subject><subject>Voltage</subject><subject>wireless EV charging</subject><subject>wireless power transfer</subject><issn>2168-6777</issn><issn>2168-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkNtKAzEQhoMoWLRPoBd5ga05bE6X2q4nWiq0KHizJJtJ3bLtSrIKfXu3tEjnZgZmvp_hQ-iGkhGlxNy9FovlWzFihOUjngtGtTxDA0alzqTS4vx_VuoSDVNak740E0bpAfp8qH9trG0HeAIdVF3dbrGzCTye_Ngmm7Ue8Aw62-C5W_f7k7PFLnWwwaGN-KOO0EBKuHjH4y8bV_V2dY0ugm0SDI_9Ci0fi-X4OZvOn17G99OskoJnuQk2KM8Nq6gXnuncU-mdy_sPQ24Y4VKAtYpIx3LCheYeAIykzAXlRMWvED_EVrFNKUIov2O9sXFXUlLuBZUHQeVeUHkU1FO3B6ru004IKYwhnP8BJeNiLA</recordid><startdate>20240829</startdate><enddate>20240829</enddate><creator>Yang, Ziyue</creator><creator>Xia, Chenyang</creator><creator>Sun, Anran</creator><creator>Zhao, Shuze</creator><creator>Cao, Yuheng</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8041-7938</orcidid><orcidid>https://orcid.org/0009-0005-1130-5920</orcidid><orcidid>https://orcid.org/0009-0009-4554-6094</orcidid><orcidid>https://orcid.org/0009-0001-5965-5103</orcidid><orcidid>https://orcid.org/0000-0003-0867-9487</orcidid></search><sort><creationdate>20240829</creationdate><title>Bivariate Detection based Dual-Mode Metal Object Detection System for Wireless EV Charging</title><author>Yang, Ziyue ; Xia, Chenyang ; Sun, Anran ; Zhao, Shuze ; Cao, Yuheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c653-49faf7d392c1d5d284d16dbb4825f4920365eaa706b2403583deee9612bf7b5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coils</topic><topic>Electric vehicle</topic><topic>Equivalent circuits</topic><topic>Frequency modulation</topic><topic>Impedance</topic><topic>Integrated circuit modeling</topic><topic>metal object detection</topic><topic>RLC circuits</topic><topic>Voltage</topic><topic>wireless EV charging</topic><topic>wireless power transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Ziyue</creatorcontrib><creatorcontrib>Xia, Chenyang</creatorcontrib><creatorcontrib>Sun, Anran</creatorcontrib><creatorcontrib>Zhao, Shuze</creatorcontrib><creatorcontrib>Cao, Yuheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><jtitle>IEEE journal of emerging and selected topics in power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Ziyue</au><au>Xia, Chenyang</au><au>Sun, Anran</au><au>Zhao, Shuze</au><au>Cao, Yuheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bivariate Detection based Dual-Mode Metal Object Detection System for Wireless EV Charging</atitle><jtitle>IEEE journal of emerging and selected topics in power electronics</jtitle><stitle>JESTPE</stitle><date>2024-08-29</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2168-6777</issn><eissn>2168-6785</eissn><coden>IJESN2</coden><abstract>Metal object detection (MOD) technology is crucial to drive the commercialization of wireless electric vehicle (EV) charging. Previous detection coil-based MOD methods mainly detect metallic foreign objects by the variation of sampling voltage, which may mistake nonmetallic foreign objects for threats. To solve this problem, this paper proposes a bivariate detection based dual-mode MOD system integrating time-division multiplexing (TDM) mode for sensitively detecting foreign objects and frequency-swept resonance (FSR) mode for accurately identifying metallic foreign objects. Firstly, by modeling foreign objects and resonant circuits, it is observed that metallic objects increase the resonant frequency and decrease the sampling voltage at resonant frequencies. Subsequently, the specifications of the detection coil and the intrinsic resonant frequency of the resonant circuit are optimized to enhance the sensitivity of the MOD system. Finally, an experimental platform with an output power of 3.3 kW is built to verify the effectiveness of the MOD system. The experimental results show that the TMD and FSR modes of the MOD system can accurately detect and recognize metallic objects. Furthermore, the TDM mode of the MOD system can achieve 100% probability of detecting all types of coins and 78% probability of detecting 29 mm paper clips through 100 random drop tests.</abstract><pub>IEEE</pub><doi>10.1109/JESTPE.2024.3452186</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8041-7938</orcidid><orcidid>https://orcid.org/0009-0005-1130-5920</orcidid><orcidid>https://orcid.org/0009-0009-4554-6094</orcidid><orcidid>https://orcid.org/0009-0001-5965-5103</orcidid><orcidid>https://orcid.org/0000-0003-0867-9487</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-6777 |
ispartof | IEEE journal of emerging and selected topics in power electronics, 2024-08, p.1-1 |
issn | 2168-6777 2168-6785 |
language | eng |
recordid | cdi_ieee_primary_10659903 |
source | IEEE Xplore (Online service) |
subjects | Coils Electric vehicle Equivalent circuits Frequency modulation Impedance Integrated circuit modeling metal object detection RLC circuits Voltage wireless EV charging wireless power transfer |
title | Bivariate Detection based Dual-Mode Metal Object Detection System for Wireless EV Charging |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A21%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bivariate%20Detection%20based%20Dual-Mode%20Metal%20Object%20Detection%20System%20for%20Wireless%20EV%20Charging&rft.jtitle=IEEE%20journal%20of%20emerging%20and%20selected%20topics%20in%20power%20electronics&rft.au=Yang,%20Ziyue&rft.date=2024-08-29&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2168-6777&rft.eissn=2168-6785&rft.coden=IJESN2&rft_id=info:doi/10.1109/JESTPE.2024.3452186&rft_dat=%3Ccrossref_ieee_%3E10_1109_JESTPE_2024_3452186%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c653-49faf7d392c1d5d284d16dbb4825f4920365eaa706b2403583deee9612bf7b5c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10659903&rfr_iscdi=true |