Loading…

Bivariate Detection based Dual-Mode Metal Object Detection System for Wireless EV Charging

Metal object detection (MOD) technology is crucial to drive the commercialization of wireless electric vehicle (EV) charging. Previous detection coil-based MOD methods mainly detect metallic foreign objects by the variation of sampling voltage, which may mistake nonmetallic foreign objects for threa...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of emerging and selected topics in power electronics 2024-08, p.1-1
Main Authors: Yang, Ziyue, Xia, Chenyang, Sun, Anran, Zhao, Shuze, Cao, Yuheng
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1
container_issue
container_start_page 1
container_title IEEE journal of emerging and selected topics in power electronics
container_volume
creator Yang, Ziyue
Xia, Chenyang
Sun, Anran
Zhao, Shuze
Cao, Yuheng
description Metal object detection (MOD) technology is crucial to drive the commercialization of wireless electric vehicle (EV) charging. Previous detection coil-based MOD methods mainly detect metallic foreign objects by the variation of sampling voltage, which may mistake nonmetallic foreign objects for threats. To solve this problem, this paper proposes a bivariate detection based dual-mode MOD system integrating time-division multiplexing (TDM) mode for sensitively detecting foreign objects and frequency-swept resonance (FSR) mode for accurately identifying metallic foreign objects. Firstly, by modeling foreign objects and resonant circuits, it is observed that metallic objects increase the resonant frequency and decrease the sampling voltage at resonant frequencies. Subsequently, the specifications of the detection coil and the intrinsic resonant frequency of the resonant circuit are optimized to enhance the sensitivity of the MOD system. Finally, an experimental platform with an output power of 3.3 kW is built to verify the effectiveness of the MOD system. The experimental results show that the TMD and FSR modes of the MOD system can accurately detect and recognize metallic objects. Furthermore, the TDM mode of the MOD system can achieve 100% probability of detecting all types of coins and 78% probability of detecting 29 mm paper clips through 100 random drop tests.
doi_str_mv 10.1109/JESTPE.2024.3452186
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10659903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10659903</ieee_id><sourcerecordid>10_1109_JESTPE_2024_3452186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c653-49faf7d392c1d5d284d16dbb4825f4920365eaa706b2403583deee9612bf7b5c3</originalsourceid><addsrcrecordid>eNpNkNtKAzEQhoMoWLRPoBd5ga05bE6X2q4nWiq0KHizJJtJ3bLtSrIKfXu3tEjnZgZmvp_hQ-iGkhGlxNy9FovlWzFihOUjngtGtTxDA0alzqTS4vx_VuoSDVNak740E0bpAfp8qH9trG0HeAIdVF3dbrGzCTye_Ngmm7Ue8Aw62-C5W_f7k7PFLnWwwaGN-KOO0EBKuHjH4y8bV_V2dY0ugm0SDI_9Ci0fi-X4OZvOn17G99OskoJnuQk2KM8Nq6gXnuncU-mdy_sPQ24Y4VKAtYpIx3LCheYeAIykzAXlRMWvED_EVrFNKUIov2O9sXFXUlLuBZUHQeVeUHkU1FO3B6ru004IKYwhnP8BJeNiLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bivariate Detection based Dual-Mode Metal Object Detection System for Wireless EV Charging</title><source>IEEE Xplore (Online service)</source><creator>Yang, Ziyue ; Xia, Chenyang ; Sun, Anran ; Zhao, Shuze ; Cao, Yuheng</creator><creatorcontrib>Yang, Ziyue ; Xia, Chenyang ; Sun, Anran ; Zhao, Shuze ; Cao, Yuheng</creatorcontrib><description>Metal object detection (MOD) technology is crucial to drive the commercialization of wireless electric vehicle (EV) charging. Previous detection coil-based MOD methods mainly detect metallic foreign objects by the variation of sampling voltage, which may mistake nonmetallic foreign objects for threats. To solve this problem, this paper proposes a bivariate detection based dual-mode MOD system integrating time-division multiplexing (TDM) mode for sensitively detecting foreign objects and frequency-swept resonance (FSR) mode for accurately identifying metallic foreign objects. Firstly, by modeling foreign objects and resonant circuits, it is observed that metallic objects increase the resonant frequency and decrease the sampling voltage at resonant frequencies. Subsequently, the specifications of the detection coil and the intrinsic resonant frequency of the resonant circuit are optimized to enhance the sensitivity of the MOD system. Finally, an experimental platform with an output power of 3.3 kW is built to verify the effectiveness of the MOD system. The experimental results show that the TMD and FSR modes of the MOD system can accurately detect and recognize metallic objects. Furthermore, the TDM mode of the MOD system can achieve 100% probability of detecting all types of coins and 78% probability of detecting 29 mm paper clips through 100 random drop tests.</description><identifier>ISSN: 2168-6777</identifier><identifier>EISSN: 2168-6785</identifier><identifier>DOI: 10.1109/JESTPE.2024.3452186</identifier><identifier>CODEN: IJESN2</identifier><language>eng</language><publisher>IEEE</publisher><subject>Coils ; Electric vehicle ; Equivalent circuits ; Frequency modulation ; Impedance ; Integrated circuit modeling ; metal object detection ; RLC circuits ; Voltage ; wireless EV charging ; wireless power transfer</subject><ispartof>IEEE journal of emerging and selected topics in power electronics, 2024-08, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8041-7938 ; 0009-0005-1130-5920 ; 0009-0009-4554-6094 ; 0009-0001-5965-5103 ; 0000-0003-0867-9487</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10659903$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Yang, Ziyue</creatorcontrib><creatorcontrib>Xia, Chenyang</creatorcontrib><creatorcontrib>Sun, Anran</creatorcontrib><creatorcontrib>Zhao, Shuze</creatorcontrib><creatorcontrib>Cao, Yuheng</creatorcontrib><title>Bivariate Detection based Dual-Mode Metal Object Detection System for Wireless EV Charging</title><title>IEEE journal of emerging and selected topics in power electronics</title><addtitle>JESTPE</addtitle><description>Metal object detection (MOD) technology is crucial to drive the commercialization of wireless electric vehicle (EV) charging. Previous detection coil-based MOD methods mainly detect metallic foreign objects by the variation of sampling voltage, which may mistake nonmetallic foreign objects for threats. To solve this problem, this paper proposes a bivariate detection based dual-mode MOD system integrating time-division multiplexing (TDM) mode for sensitively detecting foreign objects and frequency-swept resonance (FSR) mode for accurately identifying metallic foreign objects. Firstly, by modeling foreign objects and resonant circuits, it is observed that metallic objects increase the resonant frequency and decrease the sampling voltage at resonant frequencies. Subsequently, the specifications of the detection coil and the intrinsic resonant frequency of the resonant circuit are optimized to enhance the sensitivity of the MOD system. Finally, an experimental platform with an output power of 3.3 kW is built to verify the effectiveness of the MOD system. The experimental results show that the TMD and FSR modes of the MOD system can accurately detect and recognize metallic objects. Furthermore, the TDM mode of the MOD system can achieve 100% probability of detecting all types of coins and 78% probability of detecting 29 mm paper clips through 100 random drop tests.</description><subject>Coils</subject><subject>Electric vehicle</subject><subject>Equivalent circuits</subject><subject>Frequency modulation</subject><subject>Impedance</subject><subject>Integrated circuit modeling</subject><subject>metal object detection</subject><subject>RLC circuits</subject><subject>Voltage</subject><subject>wireless EV charging</subject><subject>wireless power transfer</subject><issn>2168-6777</issn><issn>2168-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkNtKAzEQhoMoWLRPoBd5ga05bE6X2q4nWiq0KHizJJtJ3bLtSrIKfXu3tEjnZgZmvp_hQ-iGkhGlxNy9FovlWzFihOUjngtGtTxDA0alzqTS4vx_VuoSDVNak740E0bpAfp8qH9trG0HeAIdVF3dbrGzCTye_Ngmm7Ue8Aw62-C5W_f7k7PFLnWwwaGN-KOO0EBKuHjH4y8bV_V2dY0ugm0SDI_9Ci0fi-X4OZvOn17G99OskoJnuQk2KM8Nq6gXnuncU-mdy_sPQ24Y4VKAtYpIx3LCheYeAIykzAXlRMWvED_EVrFNKUIov2O9sXFXUlLuBZUHQeVeUHkU1FO3B6ru004IKYwhnP8BJeNiLA</recordid><startdate>20240829</startdate><enddate>20240829</enddate><creator>Yang, Ziyue</creator><creator>Xia, Chenyang</creator><creator>Sun, Anran</creator><creator>Zhao, Shuze</creator><creator>Cao, Yuheng</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8041-7938</orcidid><orcidid>https://orcid.org/0009-0005-1130-5920</orcidid><orcidid>https://orcid.org/0009-0009-4554-6094</orcidid><orcidid>https://orcid.org/0009-0001-5965-5103</orcidid><orcidid>https://orcid.org/0000-0003-0867-9487</orcidid></search><sort><creationdate>20240829</creationdate><title>Bivariate Detection based Dual-Mode Metal Object Detection System for Wireless EV Charging</title><author>Yang, Ziyue ; Xia, Chenyang ; Sun, Anran ; Zhao, Shuze ; Cao, Yuheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c653-49faf7d392c1d5d284d16dbb4825f4920365eaa706b2403583deee9612bf7b5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coils</topic><topic>Electric vehicle</topic><topic>Equivalent circuits</topic><topic>Frequency modulation</topic><topic>Impedance</topic><topic>Integrated circuit modeling</topic><topic>metal object detection</topic><topic>RLC circuits</topic><topic>Voltage</topic><topic>wireless EV charging</topic><topic>wireless power transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Ziyue</creatorcontrib><creatorcontrib>Xia, Chenyang</creatorcontrib><creatorcontrib>Sun, Anran</creatorcontrib><creatorcontrib>Zhao, Shuze</creatorcontrib><creatorcontrib>Cao, Yuheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><jtitle>IEEE journal of emerging and selected topics in power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Ziyue</au><au>Xia, Chenyang</au><au>Sun, Anran</au><au>Zhao, Shuze</au><au>Cao, Yuheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bivariate Detection based Dual-Mode Metal Object Detection System for Wireless EV Charging</atitle><jtitle>IEEE journal of emerging and selected topics in power electronics</jtitle><stitle>JESTPE</stitle><date>2024-08-29</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2168-6777</issn><eissn>2168-6785</eissn><coden>IJESN2</coden><abstract>Metal object detection (MOD) technology is crucial to drive the commercialization of wireless electric vehicle (EV) charging. Previous detection coil-based MOD methods mainly detect metallic foreign objects by the variation of sampling voltage, which may mistake nonmetallic foreign objects for threats. To solve this problem, this paper proposes a bivariate detection based dual-mode MOD system integrating time-division multiplexing (TDM) mode for sensitively detecting foreign objects and frequency-swept resonance (FSR) mode for accurately identifying metallic foreign objects. Firstly, by modeling foreign objects and resonant circuits, it is observed that metallic objects increase the resonant frequency and decrease the sampling voltage at resonant frequencies. Subsequently, the specifications of the detection coil and the intrinsic resonant frequency of the resonant circuit are optimized to enhance the sensitivity of the MOD system. Finally, an experimental platform with an output power of 3.3 kW is built to verify the effectiveness of the MOD system. The experimental results show that the TMD and FSR modes of the MOD system can accurately detect and recognize metallic objects. Furthermore, the TDM mode of the MOD system can achieve 100% probability of detecting all types of coins and 78% probability of detecting 29 mm paper clips through 100 random drop tests.</abstract><pub>IEEE</pub><doi>10.1109/JESTPE.2024.3452186</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8041-7938</orcidid><orcidid>https://orcid.org/0009-0005-1130-5920</orcidid><orcidid>https://orcid.org/0009-0009-4554-6094</orcidid><orcidid>https://orcid.org/0009-0001-5965-5103</orcidid><orcidid>https://orcid.org/0000-0003-0867-9487</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-6777
ispartof IEEE journal of emerging and selected topics in power electronics, 2024-08, p.1-1
issn 2168-6777
2168-6785
language eng
recordid cdi_ieee_primary_10659903
source IEEE Xplore (Online service)
subjects Coils
Electric vehicle
Equivalent circuits
Frequency modulation
Impedance
Integrated circuit modeling
metal object detection
RLC circuits
Voltage
wireless EV charging
wireless power transfer
title Bivariate Detection based Dual-Mode Metal Object Detection System for Wireless EV Charging
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A21%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bivariate%20Detection%20based%20Dual-Mode%20Metal%20Object%20Detection%20System%20for%20Wireless%20EV%20Charging&rft.jtitle=IEEE%20journal%20of%20emerging%20and%20selected%20topics%20in%20power%20electronics&rft.au=Yang,%20Ziyue&rft.date=2024-08-29&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2168-6777&rft.eissn=2168-6785&rft.coden=IJESN2&rft_id=info:doi/10.1109/JESTPE.2024.3452186&rft_dat=%3Ccrossref_ieee_%3E10_1109_JESTPE_2024_3452186%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c653-49faf7d392c1d5d284d16dbb4825f4920365eaa706b2403583deee9612bf7b5c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10659903&rfr_iscdi=true