Loading…

A Global Path Planning Method for Mobile Robots Based on Multiple Improvements of A

Traditional A* algorithm faces challenges in the context of complex environments, optimal solution selection, and non-smooth paths when dealing with the path planning problem for mobile robots. To address these issues, several improvements have been made to the classical A* algorithm, incorporating...

Full description

Saved in:
Bibliographic Details
Main Authors: Chengyu, Liu, Xun, Li, Yiming, Wei, Jinsuo, Wang, Jinguo, Zhou
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3072
container_issue
container_start_page 3067
container_title
container_volume
creator Chengyu, Liu
Xun, Li
Yiming, Wei
Jinsuo, Wang
Jinguo, Zhou
description Traditional A* algorithm faces challenges in the context of complex environments, optimal solution selection, and non-smooth paths when dealing with the path planning problem for mobile robots. To address these issues, several improvements have been made to the classical A* algorithm, incorporating dynamic weighting coefficients, optimizing heuristic functions, and employing Bayesian curve-smoothed paths. These modifications enable the algorithm to achieve favorable search results while considering time constraints. Experimental results demonstrate a significant advantage of the improved algorithm in terms of path length, with a reduction of 1.6 seconds in robot runtime compared to the classical A* algorithm under equivalent conditions, representing a 5% decrease in runtime. Additionally, in local areas with frequent sharp turns and large angles, the robot experiences noticeable speed reduction, effectively avoiding oscillations and potential collisions with walls.
doi_str_mv 10.23919/CCC63176.2024.10662456
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10662456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10662456</ieee_id><sourcerecordid>10662456</sourcerecordid><originalsourceid>FETCH-ieee_primary_106624563</originalsourceid><addsrcrecordid>eNqFzrFuwjAUhWG3UiWg5Q2Qel-AYMeJsUcatcAQKSrsyBE34MrxjeKA1LdvhnbudIbvDD9jr4InqTTCrIqiUFKsVZLyNEsEVyrNcvXAZkbrda5FrvNHNhVGZsvxpSdsFuMX54obIafssIGtp9p6qOxwhcrbEFy4QInDlc7QUA8l1c4jfFJNQ4Q3G_EMFKC8-cF1I-zbrqc7thhGpgY2L-ypsT7i_Hef2eLj_Vjslg4RT13vWtt_n_5K5T_8A63hQUQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Global Path Planning Method for Mobile Robots Based on Multiple Improvements of A</title><source>IEEE Xplore All Conference Series</source><creator>Chengyu, Liu ; Xun, Li ; Yiming, Wei ; Jinsuo, Wang ; Jinguo, Zhou</creator><creatorcontrib>Chengyu, Liu ; Xun, Li ; Yiming, Wei ; Jinsuo, Wang ; Jinguo, Zhou</creatorcontrib><description>Traditional A* algorithm faces challenges in the context of complex environments, optimal solution selection, and non-smooth paths when dealing with the path planning problem for mobile robots. To address these issues, several improvements have been made to the classical A* algorithm, incorporating dynamic weighting coefficients, optimizing heuristic functions, and employing Bayesian curve-smoothed paths. These modifications enable the algorithm to achieve favorable search results while considering time constraints. Experimental results demonstrate a significant advantage of the improved algorithm in terms of path length, with a reduction of 1.6 seconds in robot runtime compared to the classical A* algorithm under equivalent conditions, representing a 5% decrease in runtime. Additionally, in local areas with frequent sharp turns and large angles, the robot experiences noticeable speed reduction, effectively avoiding oscillations and potential collisions with walls.</description><identifier>EISSN: 1934-1768</identifier><identifier>EISBN: 9887581585</identifier><identifier>EISBN: 9789887581581</identifier><identifier>DOI: 10.23919/CCC63176.2024.10662456</identifier><language>eng</language><publisher>Technical Committee on Control Theory, Chinese Association of Automation</publisher><subject>A Algorithm ; Bayesian Curve ; Heuristic algorithms ; Heuristic Function ; Mobile Robot ; Mobile robots ; Path planning ; Planning ; Runtime ; Time factors ; Turning</subject><ispartof>2024 43rd Chinese Control Conference (CCC), 2024, p.3067-3072</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10662456$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23911,23912,25120,27904,54533,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10662456$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chengyu, Liu</creatorcontrib><creatorcontrib>Xun, Li</creatorcontrib><creatorcontrib>Yiming, Wei</creatorcontrib><creatorcontrib>Jinsuo, Wang</creatorcontrib><creatorcontrib>Jinguo, Zhou</creatorcontrib><title>A Global Path Planning Method for Mobile Robots Based on Multiple Improvements of A</title><title>2024 43rd Chinese Control Conference (CCC)</title><addtitle>CCC</addtitle><description>Traditional A* algorithm faces challenges in the context of complex environments, optimal solution selection, and non-smooth paths when dealing with the path planning problem for mobile robots. To address these issues, several improvements have been made to the classical A* algorithm, incorporating dynamic weighting coefficients, optimizing heuristic functions, and employing Bayesian curve-smoothed paths. These modifications enable the algorithm to achieve favorable search results while considering time constraints. Experimental results demonstrate a significant advantage of the improved algorithm in terms of path length, with a reduction of 1.6 seconds in robot runtime compared to the classical A* algorithm under equivalent conditions, representing a 5% decrease in runtime. Additionally, in local areas with frequent sharp turns and large angles, the robot experiences noticeable speed reduction, effectively avoiding oscillations and potential collisions with walls.</description><subject>A Algorithm</subject><subject>Bayesian Curve</subject><subject>Heuristic algorithms</subject><subject>Heuristic Function</subject><subject>Mobile Robot</subject><subject>Mobile robots</subject><subject>Path planning</subject><subject>Planning</subject><subject>Runtime</subject><subject>Time factors</subject><subject>Turning</subject><issn>1934-1768</issn><isbn>9887581585</isbn><isbn>9789887581581</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFzrFuwjAUhWG3UiWg5Q2Qel-AYMeJsUcatcAQKSrsyBE34MrxjeKA1LdvhnbudIbvDD9jr4InqTTCrIqiUFKsVZLyNEsEVyrNcvXAZkbrda5FrvNHNhVGZsvxpSdsFuMX54obIafssIGtp9p6qOxwhcrbEFy4QInDlc7QUA8l1c4jfFJNQ4Q3G_EMFKC8-cF1I-zbrqc7thhGpgY2L-ypsT7i_Hef2eLj_Vjslg4RT13vWtt_n_5K5T_8A63hQUQ</recordid><startdate>20240728</startdate><enddate>20240728</enddate><creator>Chengyu, Liu</creator><creator>Xun, Li</creator><creator>Yiming, Wei</creator><creator>Jinsuo, Wang</creator><creator>Jinguo, Zhou</creator><general>Technical Committee on Control Theory, Chinese Association of Automation</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240728</creationdate><title>A Global Path Planning Method for Mobile Robots Based on Multiple Improvements of A</title><author>Chengyu, Liu ; Xun, Li ; Yiming, Wei ; Jinsuo, Wang ; Jinguo, Zhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_106624563</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>A Algorithm</topic><topic>Bayesian Curve</topic><topic>Heuristic algorithms</topic><topic>Heuristic Function</topic><topic>Mobile Robot</topic><topic>Mobile robots</topic><topic>Path planning</topic><topic>Planning</topic><topic>Runtime</topic><topic>Time factors</topic><topic>Turning</topic><toplevel>online_resources</toplevel><creatorcontrib>Chengyu, Liu</creatorcontrib><creatorcontrib>Xun, Li</creatorcontrib><creatorcontrib>Yiming, Wei</creatorcontrib><creatorcontrib>Jinsuo, Wang</creatorcontrib><creatorcontrib>Jinguo, Zhou</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chengyu, Liu</au><au>Xun, Li</au><au>Yiming, Wei</au><au>Jinsuo, Wang</au><au>Jinguo, Zhou</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Global Path Planning Method for Mobile Robots Based on Multiple Improvements of A</atitle><btitle>2024 43rd Chinese Control Conference (CCC)</btitle><stitle>CCC</stitle><date>2024-07-28</date><risdate>2024</risdate><spage>3067</spage><epage>3072</epage><pages>3067-3072</pages><eissn>1934-1768</eissn><eisbn>9887581585</eisbn><eisbn>9789887581581</eisbn><abstract>Traditional A* algorithm faces challenges in the context of complex environments, optimal solution selection, and non-smooth paths when dealing with the path planning problem for mobile robots. To address these issues, several improvements have been made to the classical A* algorithm, incorporating dynamic weighting coefficients, optimizing heuristic functions, and employing Bayesian curve-smoothed paths. These modifications enable the algorithm to achieve favorable search results while considering time constraints. Experimental results demonstrate a significant advantage of the improved algorithm in terms of path length, with a reduction of 1.6 seconds in robot runtime compared to the classical A* algorithm under equivalent conditions, representing a 5% decrease in runtime. Additionally, in local areas with frequent sharp turns and large angles, the robot experiences noticeable speed reduction, effectively avoiding oscillations and potential collisions with walls.</abstract><pub>Technical Committee on Control Theory, Chinese Association of Automation</pub><doi>10.23919/CCC63176.2024.10662456</doi></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1934-1768
ispartof 2024 43rd Chinese Control Conference (CCC), 2024, p.3067-3072
issn 1934-1768
language eng
recordid cdi_ieee_primary_10662456
source IEEE Xplore All Conference Series
subjects A Algorithm
Bayesian Curve
Heuristic algorithms
Heuristic Function
Mobile Robot
Mobile robots
Path planning
Planning
Runtime
Time factors
Turning
title A Global Path Planning Method for Mobile Robots Based on Multiple Improvements of A
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A29%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Global%20Path%20Planning%20Method%20for%20Mobile%20Robots%20Based%20on%20Multiple%20Improvements%20of%20A&rft.btitle=2024%2043rd%20Chinese%20Control%20Conference%20(CCC)&rft.au=Chengyu,%20Liu&rft.date=2024-07-28&rft.spage=3067&rft.epage=3072&rft.pages=3067-3072&rft.eissn=1934-1768&rft_id=info:doi/10.23919/CCC63176.2024.10662456&rft.eisbn=9887581585&rft.eisbn_list=9789887581581&rft_dat=%3Cieee_CHZPO%3E10662456%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_106624563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10662456&rfr_iscdi=true