Loading…

A Comparative Analysis of Perturb and Observe and Fuzzy Logic Control Methods for Maximum Power Point Tracking in Photovoltaic Systems

Maximum Power Point Tracking (MPPT) techniques play a pivotal role in optimizing the energy harvesting efficiency of photovoltaic (PV) systems. Among the various MPPT algorithms, Perturb and Observe (P&O) and fuzzy logic control have emerged as prominent contenders due to their simplicity and ef...

Full description

Saved in:
Bibliographic Details
Main Authors: Vora, Kunal, Liu, Shichao, Dhulipati, Himavarsha
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 948
container_issue
container_start_page 944
container_title
container_volume
creator Vora, Kunal
Liu, Shichao
Dhulipati, Himavarsha
description Maximum Power Point Tracking (MPPT) techniques play a pivotal role in optimizing the energy harvesting efficiency of photovoltaic (PV) systems. Among the various MPPT algorithms, Perturb and Observe (P&O) and fuzzy logic control have emerged as prominent contenders due to their simplicity and effectiveness. This paper presents a comprehensive comparative analysis of these two methods for MPPT in PV systems. The study employs simulation-based experimentation to evaluate the performance of P&O and fuzzy logic algorithms under varying irradiance level conditions. Efficiency, response time, settling time and stability are among the key performance metrics considered for comparison. Results indicate that while both P&O and fuzzy logic approaches exhibit commendable MPPT performance, they demonstrate distinct advantages and limitations. P&O exhibits rapid convergence to the maximum power point but suffers from oscillations around the optimal operating point. On the other hand, fuzzy logic control offers enhanced stability and robustness against step changes in irradiance levels but may require more computational resources. Simulations of the proposed system are performed in MATLAB Simulink environment.
doi_str_mv 10.1109/CCECE59415.2024.10667195
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10667195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10667195</ieee_id><sourcerecordid>10667195</sourcerecordid><originalsourceid>FETCH-LOGICAL-i106t-2c1e65dad6412977bfcda55b7c57f453569e24e1fc9501dc7b7a1cf7c00dafb73</originalsourceid><addsrcrecordid>eNo1UM1OAjEYrCYmIvIGHr4XANvd_tAj2YCaQCQRz6TbbaG6uyVtQZcH8Lldo15mJpnMJDMIAcETQrC8L4p5MWeSEjbJcEYnBHMuiGQXaCSFnOYM54LwbHqJBhkTfCww5dfoJsY3jDGdcjpAXzMofHNQQSV3MjBrVd1FF8FbWJuQjqEE1VbwXEYTev9HL47ncwdLv3O6z7Yp-BpWJu19FcH6ACv16ZpjA2v_YUKPrk2wCUq_u3YHroX13id_8nVSfcFLF5Np4i26sqqOZvTHQ_S6mG-Kx_Hy-eGpmC3Hrt-WxpkmhrNKVZySTApRWl0pxkqhmbCU5YxLk1FDrJYMk0qLUiiirdAYV8qWIh-iu99eZ4zZHoJrVOi2_7_l30ROZXo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Comparative Analysis of Perturb and Observe and Fuzzy Logic Control Methods for Maximum Power Point Tracking in Photovoltaic Systems</title><source>IEEE Xplore All Conference Series</source><creator>Vora, Kunal ; Liu, Shichao ; Dhulipati, Himavarsha</creator><creatorcontrib>Vora, Kunal ; Liu, Shichao ; Dhulipati, Himavarsha</creatorcontrib><description>Maximum Power Point Tracking (MPPT) techniques play a pivotal role in optimizing the energy harvesting efficiency of photovoltaic (PV) systems. Among the various MPPT algorithms, Perturb and Observe (P&amp;O) and fuzzy logic control have emerged as prominent contenders due to their simplicity and effectiveness. This paper presents a comprehensive comparative analysis of these two methods for MPPT in PV systems. The study employs simulation-based experimentation to evaluate the performance of P&amp;O and fuzzy logic algorithms under varying irradiance level conditions. Efficiency, response time, settling time and stability are among the key performance metrics considered for comparison. Results indicate that while both P&amp;O and fuzzy logic approaches exhibit commendable MPPT performance, they demonstrate distinct advantages and limitations. P&amp;O exhibits rapid convergence to the maximum power point but suffers from oscillations around the optimal operating point. On the other hand, fuzzy logic control offers enhanced stability and robustness against step changes in irradiance levels but may require more computational resources. Simulations of the proposed system are performed in MATLAB Simulink environment.</description><identifier>EISSN: 2576-7046</identifier><identifier>EISBN: 9798350371628</identifier><identifier>DOI: 10.1109/CCECE59415.2024.10667195</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convergence Time ; Efficiency ; Fuzzy logic ; Fuzzy Logic Control ; Maximum power point trackers ; Maximum Power Point Tracking (MPPT) ; P-V Curve ; Perturb and Observe Algorithm (P&amp;O) ; Photovoltaic systems ; Renewable energy sources ; Response Time ; Robustness ; Software packages ; Stability ; Stability analysis ; Sustainability ; Total Harmonic Distortion (THD)</subject><ispartof>2024 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), 2024, p.944-948</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10667195$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10667195$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vora, Kunal</creatorcontrib><creatorcontrib>Liu, Shichao</creatorcontrib><creatorcontrib>Dhulipati, Himavarsha</creatorcontrib><title>A Comparative Analysis of Perturb and Observe and Fuzzy Logic Control Methods for Maximum Power Point Tracking in Photovoltaic Systems</title><title>2024 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)</title><addtitle>CCECE</addtitle><description>Maximum Power Point Tracking (MPPT) techniques play a pivotal role in optimizing the energy harvesting efficiency of photovoltaic (PV) systems. Among the various MPPT algorithms, Perturb and Observe (P&amp;O) and fuzzy logic control have emerged as prominent contenders due to their simplicity and effectiveness. This paper presents a comprehensive comparative analysis of these two methods for MPPT in PV systems. The study employs simulation-based experimentation to evaluate the performance of P&amp;O and fuzzy logic algorithms under varying irradiance level conditions. Efficiency, response time, settling time and stability are among the key performance metrics considered for comparison. Results indicate that while both P&amp;O and fuzzy logic approaches exhibit commendable MPPT performance, they demonstrate distinct advantages and limitations. P&amp;O exhibits rapid convergence to the maximum power point but suffers from oscillations around the optimal operating point. On the other hand, fuzzy logic control offers enhanced stability and robustness against step changes in irradiance levels but may require more computational resources. Simulations of the proposed system are performed in MATLAB Simulink environment.</description><subject>Convergence Time</subject><subject>Efficiency</subject><subject>Fuzzy logic</subject><subject>Fuzzy Logic Control</subject><subject>Maximum power point trackers</subject><subject>Maximum Power Point Tracking (MPPT)</subject><subject>P-V Curve</subject><subject>Perturb and Observe Algorithm (P&amp;O)</subject><subject>Photovoltaic systems</subject><subject>Renewable energy sources</subject><subject>Response Time</subject><subject>Robustness</subject><subject>Software packages</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Sustainability</subject><subject>Total Harmonic Distortion (THD)</subject><issn>2576-7046</issn><isbn>9798350371628</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1UM1OAjEYrCYmIvIGHr4XANvd_tAj2YCaQCQRz6TbbaG6uyVtQZcH8Lldo15mJpnMJDMIAcETQrC8L4p5MWeSEjbJcEYnBHMuiGQXaCSFnOYM54LwbHqJBhkTfCww5dfoJsY3jDGdcjpAXzMofHNQQSV3MjBrVd1FF8FbWJuQjqEE1VbwXEYTev9HL47ncwdLv3O6z7Yp-BpWJu19FcH6ACv16ZpjA2v_YUKPrk2wCUq_u3YHroX13id_8nVSfcFLF5Np4i26sqqOZvTHQ_S6mG-Kx_Hy-eGpmC3Hrt-WxpkmhrNKVZySTApRWl0pxkqhmbCU5YxLk1FDrJYMk0qLUiiirdAYV8qWIh-iu99eZ4zZHoJrVOi2_7_l30ROZXo</recordid><startdate>20240806</startdate><enddate>20240806</enddate><creator>Vora, Kunal</creator><creator>Liu, Shichao</creator><creator>Dhulipati, Himavarsha</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20240806</creationdate><title>A Comparative Analysis of Perturb and Observe and Fuzzy Logic Control Methods for Maximum Power Point Tracking in Photovoltaic Systems</title><author>Vora, Kunal ; Liu, Shichao ; Dhulipati, Himavarsha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i106t-2c1e65dad6412977bfcda55b7c57f453569e24e1fc9501dc7b7a1cf7c00dafb73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Convergence Time</topic><topic>Efficiency</topic><topic>Fuzzy logic</topic><topic>Fuzzy Logic Control</topic><topic>Maximum power point trackers</topic><topic>Maximum Power Point Tracking (MPPT)</topic><topic>P-V Curve</topic><topic>Perturb and Observe Algorithm (P&amp;O)</topic><topic>Photovoltaic systems</topic><topic>Renewable energy sources</topic><topic>Response Time</topic><topic>Robustness</topic><topic>Software packages</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Sustainability</topic><topic>Total Harmonic Distortion (THD)</topic><toplevel>online_resources</toplevel><creatorcontrib>Vora, Kunal</creatorcontrib><creatorcontrib>Liu, Shichao</creatorcontrib><creatorcontrib>Dhulipati, Himavarsha</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vora, Kunal</au><au>Liu, Shichao</au><au>Dhulipati, Himavarsha</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Comparative Analysis of Perturb and Observe and Fuzzy Logic Control Methods for Maximum Power Point Tracking in Photovoltaic Systems</atitle><btitle>2024 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)</btitle><stitle>CCECE</stitle><date>2024-08-06</date><risdate>2024</risdate><spage>944</spage><epage>948</epage><pages>944-948</pages><eissn>2576-7046</eissn><eisbn>9798350371628</eisbn><abstract>Maximum Power Point Tracking (MPPT) techniques play a pivotal role in optimizing the energy harvesting efficiency of photovoltaic (PV) systems. Among the various MPPT algorithms, Perturb and Observe (P&amp;O) and fuzzy logic control have emerged as prominent contenders due to their simplicity and effectiveness. This paper presents a comprehensive comparative analysis of these two methods for MPPT in PV systems. The study employs simulation-based experimentation to evaluate the performance of P&amp;O and fuzzy logic algorithms under varying irradiance level conditions. Efficiency, response time, settling time and stability are among the key performance metrics considered for comparison. Results indicate that while both P&amp;O and fuzzy logic approaches exhibit commendable MPPT performance, they demonstrate distinct advantages and limitations. P&amp;O exhibits rapid convergence to the maximum power point but suffers from oscillations around the optimal operating point. On the other hand, fuzzy logic control offers enhanced stability and robustness against step changes in irradiance levels but may require more computational resources. Simulations of the proposed system are performed in MATLAB Simulink environment.</abstract><pub>IEEE</pub><doi>10.1109/CCECE59415.2024.10667195</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2576-7046
ispartof 2024 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), 2024, p.944-948
issn 2576-7046
language eng
recordid cdi_ieee_primary_10667195
source IEEE Xplore All Conference Series
subjects Convergence Time
Efficiency
Fuzzy logic
Fuzzy Logic Control
Maximum power point trackers
Maximum Power Point Tracking (MPPT)
P-V Curve
Perturb and Observe Algorithm (P&O)
Photovoltaic systems
Renewable energy sources
Response Time
Robustness
Software packages
Stability
Stability analysis
Sustainability
Total Harmonic Distortion (THD)
title A Comparative Analysis of Perturb and Observe and Fuzzy Logic Control Methods for Maximum Power Point Tracking in Photovoltaic Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A28%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Comparative%20Analysis%20of%20Perturb%20and%20Observe%20and%20Fuzzy%20Logic%20Control%20Methods%20for%20Maximum%20Power%20Point%20Tracking%20in%20Photovoltaic%20Systems&rft.btitle=2024%20IEEE%20Canadian%20Conference%20on%20Electrical%20and%20Computer%20Engineering%20(CCECE)&rft.au=Vora,%20Kunal&rft.date=2024-08-06&rft.spage=944&rft.epage=948&rft.pages=944-948&rft.eissn=2576-7046&rft_id=info:doi/10.1109/CCECE59415.2024.10667195&rft.eisbn=9798350371628&rft_dat=%3Cieee_CHZPO%3E10667195%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i106t-2c1e65dad6412977bfcda55b7c57f453569e24e1fc9501dc7b7a1cf7c00dafb73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10667195&rfr_iscdi=true