Loading…
Study on Motor Characteristics Due to Partial Magnetization of Permanent Magnets Post-Assembly and the Design of an Improved Post-Magnetization System
Recently, the application fields using permanent magnet motors have been rapidly expanding. Consequently, research on the production technology of permanent magnet motors is actively progressing, with a particular emphasis on the importance of the magnetization process during assembly after insertin...
Saved in:
Published in: | IEEE access 2024, Vol.12, p.133764-133769 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recently, the application fields using permanent magnet motors have been rapidly expanding. Consequently, research on the production technology of permanent magnet motors is actively progressing, with a particular emphasis on the importance of the magnetization process during assembly after inserting permanent magnets into motors. Traditional designs of post-magnetization systems are tailored to address the issue of increased leakage flux at the corners of permanent magnets in embedded permanent magnet synchronous machines, based on the rotor structure. This involves using more power and designing larger magnetizing yokes to reduce heat generation through compensatory design. This paper proposes a design process that analyzes the effects of incomplete magnetization on motor characteristics and can derive a design that does not adversely affect motor performance during localized incomplete magnetization. The process validated through simulations and experiments can reduce power consumption by approximately 40% compared to traditional methods. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2024.3457918 |