Loading…

(Street) Lights Will Guide You: Georeferencing Nighttime Astronaut Photography of Earth

Astronaut photography from the International Space Station provides the highest spatial resolution nighttime Earth observations imagery publicly available, offering up to a 150x increase in resolution over other freely accessible satellite data sources. Yet, this imagery is underutilized in science...

Full description

Saved in:
Bibliographic Details
Main Authors: Stoken, Alex, Ilhardt, Peter, Lambert, Mark, Fisher, Kenton
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 501
container_issue
container_start_page 492
container_title
container_volume
creator Stoken, Alex
Ilhardt, Peter
Lambert, Mark
Fisher, Kenton
description Astronaut photography from the International Space Station provides the highest spatial resolution nighttime Earth observations imagery publicly available, offering up to a 150x increase in resolution over other freely accessible satellite data sources. Yet, this imagery is underutilized in science applications because it lacks the geolocation meta-data required for downstream analysis. We present Night-Match, a fast and accurate method for localizing and geo-rectifying nighttime astronaut photography. By combining street network data with daytime satellite imagery, we produce a reliable reference target for similarity detection via pairwise image matching. We curate and release the Astronaut Imagery Matching Subset - Night (AIMS-Night), a collection of 363 images and ground truth localizations, and benchmark our method against this set to establish a robust localization pipeline. Our method correctly localizes 81.8% of AIMS-Night, and can be quickly deployed on the over 2 million nighttime astronaut photographs to produce a high quality analysis-ready data product.
doi_str_mv 10.1109/CVPRW63382.2024.00054
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10678216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10678216</ieee_id><sourcerecordid>10678216</sourcerecordid><originalsourceid>FETCH-ieee_primary_106782163</originalsourceid><addsrcrecordid>eNqFjkFrwjAYQONgMNn6Dxx8R3ew-9I0abvbEHWHMWQTiycJ-rWN1EaS9OC_V8H7Tu_w3uEx9sox5hyL9-l6-VsqIfIkTjBJY0SU6YBFRVbkQqJQMs3SBzZMuMJJJrl6YpH3h2vGMZeyEENWjv-CIwpv8G3qJngoTdvCojd7go3tP2BB1lFFjrqd6Wr4uVXBHAk-fXC2032AZWODrZ0-NWewFcy0C80Le6x06ym685mN5rPV9GtiiGh7cuao3XnLUWX59U78oy8mhkSg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>(Street) Lights Will Guide You: Georeferencing Nighttime Astronaut Photography of Earth</title><source>IEEE Xplore All Conference Series</source><creator>Stoken, Alex ; Ilhardt, Peter ; Lambert, Mark ; Fisher, Kenton</creator><creatorcontrib>Stoken, Alex ; Ilhardt, Peter ; Lambert, Mark ; Fisher, Kenton</creatorcontrib><description>Astronaut photography from the International Space Station provides the highest spatial resolution nighttime Earth observations imagery publicly available, offering up to a 150x increase in resolution over other freely accessible satellite data sources. Yet, this imagery is underutilized in science applications because it lacks the geolocation meta-data required for downstream analysis. We present Night-Match, a fast and accurate method for localizing and geo-rectifying nighttime astronaut photography. By combining street network data with daytime satellite imagery, we produce a reliable reference target for similarity detection via pairwise image matching. We curate and release the Astronaut Imagery Matching Subset - Night (AIMS-Night), a collection of 363 images and ground truth localizations, and benchmark our method against this set to establish a robust localization pipeline. Our method correctly localizes 81.8% of AIMS-Night, and can be quickly deployed on the over 2 million nighttime astronaut photographs to produce a high quality analysis-ready data product.</description><identifier>EISSN: 2160-7516</identifier><identifier>EISBN: 9798350365474</identifier><identifier>DOI: 10.1109/CVPRW63382.2024.00054</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Astronaut Photography ; Earth ; Geology ; Image Matching ; Location awareness ; Nighttime Imagery ; Photography ; Remote Sensing ; Roads ; Soft sensors ; Urban areas</subject><ispartof>2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2024, p.492-501</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10678216$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10678216$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Stoken, Alex</creatorcontrib><creatorcontrib>Ilhardt, Peter</creatorcontrib><creatorcontrib>Lambert, Mark</creatorcontrib><creatorcontrib>Fisher, Kenton</creatorcontrib><title>(Street) Lights Will Guide You: Georeferencing Nighttime Astronaut Photography of Earth</title><title>2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</title><addtitle>CVPRW</addtitle><description>Astronaut photography from the International Space Station provides the highest spatial resolution nighttime Earth observations imagery publicly available, offering up to a 150x increase in resolution over other freely accessible satellite data sources. Yet, this imagery is underutilized in science applications because it lacks the geolocation meta-data required for downstream analysis. We present Night-Match, a fast and accurate method for localizing and geo-rectifying nighttime astronaut photography. By combining street network data with daytime satellite imagery, we produce a reliable reference target for similarity detection via pairwise image matching. We curate and release the Astronaut Imagery Matching Subset - Night (AIMS-Night), a collection of 363 images and ground truth localizations, and benchmark our method against this set to establish a robust localization pipeline. Our method correctly localizes 81.8% of AIMS-Night, and can be quickly deployed on the over 2 million nighttime astronaut photographs to produce a high quality analysis-ready data product.</description><subject>Astronaut Photography</subject><subject>Earth</subject><subject>Geology</subject><subject>Image Matching</subject><subject>Location awareness</subject><subject>Nighttime Imagery</subject><subject>Photography</subject><subject>Remote Sensing</subject><subject>Roads</subject><subject>Soft sensors</subject><subject>Urban areas</subject><issn>2160-7516</issn><isbn>9798350365474</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFjkFrwjAYQONgMNn6Dxx8R3ew-9I0abvbEHWHMWQTiycJ-rWN1EaS9OC_V8H7Tu_w3uEx9sox5hyL9-l6-VsqIfIkTjBJY0SU6YBFRVbkQqJQMs3SBzZMuMJJJrl6YpH3h2vGMZeyEENWjv-CIwpv8G3qJngoTdvCojd7go3tP2BB1lFFjrqd6Wr4uVXBHAk-fXC2032AZWODrZ0-NWewFcy0C80Le6x06ym685mN5rPV9GtiiGh7cuao3XnLUWX59U78oy8mhkSg</recordid><startdate>20240617</startdate><enddate>20240617</enddate><creator>Stoken, Alex</creator><creator>Ilhardt, Peter</creator><creator>Lambert, Mark</creator><creator>Fisher, Kenton</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240617</creationdate><title>(Street) Lights Will Guide You: Georeferencing Nighttime Astronaut Photography of Earth</title><author>Stoken, Alex ; Ilhardt, Peter ; Lambert, Mark ; Fisher, Kenton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_106782163</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Astronaut Photography</topic><topic>Earth</topic><topic>Geology</topic><topic>Image Matching</topic><topic>Location awareness</topic><topic>Nighttime Imagery</topic><topic>Photography</topic><topic>Remote Sensing</topic><topic>Roads</topic><topic>Soft sensors</topic><topic>Urban areas</topic><toplevel>online_resources</toplevel><creatorcontrib>Stoken, Alex</creatorcontrib><creatorcontrib>Ilhardt, Peter</creatorcontrib><creatorcontrib>Lambert, Mark</creatorcontrib><creatorcontrib>Fisher, Kenton</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Stoken, Alex</au><au>Ilhardt, Peter</au><au>Lambert, Mark</au><au>Fisher, Kenton</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>(Street) Lights Will Guide You: Georeferencing Nighttime Astronaut Photography of Earth</atitle><btitle>2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</btitle><stitle>CVPRW</stitle><date>2024-06-17</date><risdate>2024</risdate><spage>492</spage><epage>501</epage><pages>492-501</pages><eissn>2160-7516</eissn><eisbn>9798350365474</eisbn><coden>IEEPAD</coden><abstract>Astronaut photography from the International Space Station provides the highest spatial resolution nighttime Earth observations imagery publicly available, offering up to a 150x increase in resolution over other freely accessible satellite data sources. Yet, this imagery is underutilized in science applications because it lacks the geolocation meta-data required for downstream analysis. We present Night-Match, a fast and accurate method for localizing and geo-rectifying nighttime astronaut photography. By combining street network data with daytime satellite imagery, we produce a reliable reference target for similarity detection via pairwise image matching. We curate and release the Astronaut Imagery Matching Subset - Night (AIMS-Night), a collection of 363 images and ground truth localizations, and benchmark our method against this set to establish a robust localization pipeline. Our method correctly localizes 81.8% of AIMS-Night, and can be quickly deployed on the over 2 million nighttime astronaut photographs to produce a high quality analysis-ready data product.</abstract><pub>IEEE</pub><doi>10.1109/CVPRW63382.2024.00054</doi></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2160-7516
ispartof 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2024, p.492-501
issn 2160-7516
language eng
recordid cdi_ieee_primary_10678216
source IEEE Xplore All Conference Series
subjects Astronaut Photography
Earth
Geology
Image Matching
Location awareness
Nighttime Imagery
Photography
Remote Sensing
Roads
Soft sensors
Urban areas
title (Street) Lights Will Guide You: Georeferencing Nighttime Astronaut Photography of Earth
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A37%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=(Street)%20Lights%20Will%20Guide%20You:%20Georeferencing%20Nighttime%20Astronaut%20Photography%20of%20Earth&rft.btitle=2024%20IEEE/CVF%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20Workshops%20(CVPRW)&rft.au=Stoken,%20Alex&rft.date=2024-06-17&rft.spage=492&rft.epage=501&rft.pages=492-501&rft.eissn=2160-7516&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CVPRW63382.2024.00054&rft.eisbn=9798350365474&rft_dat=%3Cieee_CHZPO%3E10678216%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_106782163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10678216&rfr_iscdi=true