Loading…

Dataset condensation with latent quantile matching

Dataset condensation (DC) methods aim to learn a smaller, synthesized dataset with informative data records to accelerate the training of machine learning models. Current distribution matching (DM) based DC methods learn a synthesized dataset by matching the mean of the latent embeddings between the...

Full description

Saved in:
Bibliographic Details
Main Authors: Wei, Wei, De Schepper, Tom, Mets, Kevin
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 7712
container_issue
container_start_page 7703
container_title
container_volume
creator Wei, Wei
De Schepper, Tom
Mets, Kevin
description Dataset condensation (DC) methods aim to learn a smaller, synthesized dataset with informative data records to accelerate the training of machine learning models. Current distribution matching (DM) based DC methods learn a synthesized dataset by matching the mean of the latent embeddings between the synthetic and the real dataset. However, two distributions with the same mean can still be vastly different. In this work, we demonstrate the shortcomings of using Maximum Mean Discrepancy to match latent distributions, i.e., the weak matching power and lack of outlier regularization. To alleviate these shortcomings, we propose our new method: Latent Quantile Matching (LQM), which matches the quantiles of the latent embeddings to minimize the goodness of fit test statistic between two distributions. Empirical experiments on both image and graph-structured datasets show that LQM matches or outperforms previous state of the art in distribution matching based DC. Moreover, we show that LQM improves the performance in continual graph learning (CGL) setting, where memory efficiency and privacy can be important. Our work sheds light on the application of DM based DC for CGL.
doi_str_mv 10.1109/CVPRW63382.2024.00766
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10678249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10678249</ieee_id><sourcerecordid>10678249</sourcerecordid><originalsourceid>FETCH-LOGICAL-i686-ec01fcf1a537e4a0230be98779bf6fb85bc1327354e9804a21e6b9689efee7763</originalsourceid><addsrcrecordid>eNotzNtKAzEQgOEoCJa6b6CwL7DrTA6T5FLWIxSUUuplya4TG9mm2o2Ib6-gVz98F78QFwgtIvjLbv20fCalnGwlSN0CWKIjUXnrnTKgyGirj8VMIkFjDdKpqKbpDQAQnDFezYS8DiVMXOphn184T6Gkfa6_UtnWYyicS_3xGXJJI9e7UIZtyq9n4iSGceLqv3Oxur1ZdffN4vHuobtaNIkcNTwAxiFiMMqyDiAV9Oydtb6PFHtn-gGVtMroXwUdJDL1npznyGwtqbk4_9smZt68H9IuHL43CGSd1F79ADL-Rko</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Dataset condensation with latent quantile matching</title><source>IEEE Xplore All Conference Series</source><creator>Wei, Wei ; De Schepper, Tom ; Mets, Kevin</creator><creatorcontrib>Wei, Wei ; De Schepper, Tom ; Mets, Kevin</creatorcontrib><description>Dataset condensation (DC) methods aim to learn a smaller, synthesized dataset with informative data records to accelerate the training of machine learning models. Current distribution matching (DM) based DC methods learn a synthesized dataset by matching the mean of the latent embeddings between the synthetic and the real dataset. However, two distributions with the same mean can still be vastly different. In this work, we demonstrate the shortcomings of using Maximum Mean Discrepancy to match latent distributions, i.e., the weak matching power and lack of outlier regularization. To alleviate these shortcomings, we propose our new method: Latent Quantile Matching (LQM), which matches the quantiles of the latent embeddings to minimize the goodness of fit test statistic between two distributions. Empirical experiments on both image and graph-structured datasets show that LQM matches or outperforms previous state of the art in distribution matching based DC. Moreover, we show that LQM improves the performance in continual graph learning (CGL) setting, where memory efficiency and privacy can be important. Our work sheds light on the application of DM based DC for CGL.</description><identifier>EISSN: 2160-7516</identifier><identifier>EISBN: 9798350365474</identifier><identifier>DOI: 10.1109/CVPRW63382.2024.00766</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Conferences ; Continual graph learning ; Current distribution ; Data privacy ; Dataset condensation ; Dataset distillation ; Distribution matching ; Goodness of fit tests ; Machine learning ; Measurement ; Memory management ; Training</subject><ispartof>2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2024, p.7703-7712</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10678249$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27904,54533,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10678249$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>De Schepper, Tom</creatorcontrib><creatorcontrib>Mets, Kevin</creatorcontrib><title>Dataset condensation with latent quantile matching</title><title>2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</title><addtitle>CVPRW</addtitle><description>Dataset condensation (DC) methods aim to learn a smaller, synthesized dataset with informative data records to accelerate the training of machine learning models. Current distribution matching (DM) based DC methods learn a synthesized dataset by matching the mean of the latent embeddings between the synthetic and the real dataset. However, two distributions with the same mean can still be vastly different. In this work, we demonstrate the shortcomings of using Maximum Mean Discrepancy to match latent distributions, i.e., the weak matching power and lack of outlier regularization. To alleviate these shortcomings, we propose our new method: Latent Quantile Matching (LQM), which matches the quantiles of the latent embeddings to minimize the goodness of fit test statistic between two distributions. Empirical experiments on both image and graph-structured datasets show that LQM matches or outperforms previous state of the art in distribution matching based DC. Moreover, we show that LQM improves the performance in continual graph learning (CGL) setting, where memory efficiency and privacy can be important. Our work sheds light on the application of DM based DC for CGL.</description><subject>Conferences</subject><subject>Continual graph learning</subject><subject>Current distribution</subject><subject>Data privacy</subject><subject>Dataset condensation</subject><subject>Dataset distillation</subject><subject>Distribution matching</subject><subject>Goodness of fit tests</subject><subject>Machine learning</subject><subject>Measurement</subject><subject>Memory management</subject><subject>Training</subject><issn>2160-7516</issn><isbn>9798350365474</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotzNtKAzEQgOEoCJa6b6CwL7DrTA6T5FLWIxSUUuplya4TG9mm2o2Ib6-gVz98F78QFwgtIvjLbv20fCalnGwlSN0CWKIjUXnrnTKgyGirj8VMIkFjDdKpqKbpDQAQnDFezYS8DiVMXOphn184T6Gkfa6_UtnWYyicS_3xGXJJI9e7UIZtyq9n4iSGceLqv3Oxur1ZdffN4vHuobtaNIkcNTwAxiFiMMqyDiAV9Oydtb6PFHtn-gGVtMroXwUdJDL1npznyGwtqbk4_9smZt68H9IuHL43CGSd1F79ADL-Rko</recordid><startdate>20240617</startdate><enddate>20240617</enddate><creator>Wei, Wei</creator><creator>De Schepper, Tom</creator><creator>Mets, Kevin</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240617</creationdate><title>Dataset condensation with latent quantile matching</title><author>Wei, Wei ; De Schepper, Tom ; Mets, Kevin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i686-ec01fcf1a537e4a0230be98779bf6fb85bc1327354e9804a21e6b9689efee7763</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Conferences</topic><topic>Continual graph learning</topic><topic>Current distribution</topic><topic>Data privacy</topic><topic>Dataset condensation</topic><topic>Dataset distillation</topic><topic>Distribution matching</topic><topic>Goodness of fit tests</topic><topic>Machine learning</topic><topic>Measurement</topic><topic>Memory management</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>De Schepper, Tom</creatorcontrib><creatorcontrib>Mets, Kevin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wei, Wei</au><au>De Schepper, Tom</au><au>Mets, Kevin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Dataset condensation with latent quantile matching</atitle><btitle>2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</btitle><stitle>CVPRW</stitle><date>2024-06-17</date><risdate>2024</risdate><spage>7703</spage><epage>7712</epage><pages>7703-7712</pages><eissn>2160-7516</eissn><eisbn>9798350365474</eisbn><coden>IEEPAD</coden><abstract>Dataset condensation (DC) methods aim to learn a smaller, synthesized dataset with informative data records to accelerate the training of machine learning models. Current distribution matching (DM) based DC methods learn a synthesized dataset by matching the mean of the latent embeddings between the synthetic and the real dataset. However, two distributions with the same mean can still be vastly different. In this work, we demonstrate the shortcomings of using Maximum Mean Discrepancy to match latent distributions, i.e., the weak matching power and lack of outlier regularization. To alleviate these shortcomings, we propose our new method: Latent Quantile Matching (LQM), which matches the quantiles of the latent embeddings to minimize the goodness of fit test statistic between two distributions. Empirical experiments on both image and graph-structured datasets show that LQM matches or outperforms previous state of the art in distribution matching based DC. Moreover, we show that LQM improves the performance in continual graph learning (CGL) setting, where memory efficiency and privacy can be important. Our work sheds light on the application of DM based DC for CGL.</abstract><pub>IEEE</pub><doi>10.1109/CVPRW63382.2024.00766</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2160-7516
ispartof 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2024, p.7703-7712
issn 2160-7516
language eng
recordid cdi_ieee_primary_10678249
source IEEE Xplore All Conference Series
subjects Conferences
Continual graph learning
Current distribution
Data privacy
Dataset condensation
Dataset distillation
Distribution matching
Goodness of fit tests
Machine learning
Measurement
Memory management
Training
title Dataset condensation with latent quantile matching
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A03%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Dataset%20condensation%20with%20latent%20quantile%20matching&rft.btitle=2024%20IEEE/CVF%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20Workshops%20(CVPRW)&rft.au=Wei,%20Wei&rft.date=2024-06-17&rft.spage=7703&rft.epage=7712&rft.pages=7703-7712&rft.eissn=2160-7516&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CVPRW63382.2024.00766&rft.eisbn=9798350365474&rft_dat=%3Cieee_CHZPO%3E10678249%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i686-ec01fcf1a537e4a0230be98779bf6fb85bc1327354e9804a21e6b9689efee7763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10678249&rfr_iscdi=true