Loading…
Listen Then See: Video Alignment with Speaker Attention
Video-based Question Answering (Video QA) is a challenging task and becomes even more intricate when addressing Socially Intelligent Question Answering (SIQA). SIQA requires context understanding, temporal reasoning, and the integration of multimodal information, but in addition, it requires process...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2027 |
container_issue | |
container_start_page | 2018 |
container_title | |
container_volume | |
creator | Agrawal, Aviral Samudio Lezcano, Carlos Mateo Balam Heredia-Marin, Iqui Sethi, Prabhdeep Singh |
description | Video-based Question Answering (Video QA) is a challenging task and becomes even more intricate when addressing Socially Intelligent Question Answering (SIQA). SIQA requires context understanding, temporal reasoning, and the integration of multimodal information, but in addition, it requires processing nuanced human behavior. Furthermore, the complexities involved are exacerbated by the dominance of the primary modality (text) over the others. Thus, there is a need to help the task's secondary modalities to work in tandem with the primary modality. In this work, we introduce a cross-modal alignment and subsequent representation fusion approach that achieves state-of-the-art results (82.06% accuracy) on the Social IQ 2.0 dataset for SIQA. Our approach exhibits an improved ability to leverage the video modality by using the audio modality as a bridge with the language modality. This leads to enhanced performance by reducing the prevalent issue of language overfitting and resultant video modality bypassing encountered by current existing techniques. Our code and models are publicly available at [1]. |
doi_str_mv | 10.1109/CVPRW63382.2024.00207 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10678502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10678502</ieee_id><sourcerecordid>10678502</sourcerecordid><originalsourceid>FETCH-LOGICAL-i687-e4b707d4da249f57fb615367255ee5f40245de259b7fda2041ffca9285f0d2443</originalsourceid><addsrcrecordid>eNotjt1Kw0AQRldBsNS8gcK-QOLsz-xkvQtBrRBQbKiXJTGzdrVNSxIQ396A3pzv5vBxhLhRkCkF_rbcvLy-OWNynWnQNgPQQGci8eRzg2AcWrLnYqGVg5RQuUuRjOMnACjIEb1ZCKriOHEv692MNfOd3MSOj7LYx4_-wP0kv-O0k-sTN188yGKa5Ske-ytxEZr9yMn_LkX9cF-Xq7R6fnwqiyqNLqeUbUtAne0abX1ACq1TaBxpRGYMdo7GjjX6lsLsgFUhvDde5xig09aapbj-u43MvD0N8dAMP1sFjnIEbX4B7ypGqA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Listen Then See: Video Alignment with Speaker Attention</title><source>IEEE Xplore All Conference Series</source><creator>Agrawal, Aviral ; Samudio Lezcano, Carlos Mateo ; Balam Heredia-Marin, Iqui ; Sethi, Prabhdeep Singh</creator><creatorcontrib>Agrawal, Aviral ; Samudio Lezcano, Carlos Mateo ; Balam Heredia-Marin, Iqui ; Sethi, Prabhdeep Singh</creatorcontrib><description>Video-based Question Answering (Video QA) is a challenging task and becomes even more intricate when addressing Socially Intelligent Question Answering (SIQA). SIQA requires context understanding, temporal reasoning, and the integration of multimodal information, but in addition, it requires processing nuanced human behavior. Furthermore, the complexities involved are exacerbated by the dominance of the primary modality (text) over the others. Thus, there is a need to help the task's secondary modalities to work in tandem with the primary modality. In this work, we introduce a cross-modal alignment and subsequent representation fusion approach that achieves state-of-the-art results (82.06% accuracy) on the Social IQ 2.0 dataset for SIQA. Our approach exhibits an improved ability to leverage the video modality by using the audio modality as a bridge with the language modality. This leads to enhanced performance by reducing the prevalent issue of language overfitting and resultant video modality bypassing encountered by current existing techniques. Our code and models are publicly available at [1].</description><identifier>EISSN: 2160-7516</identifier><identifier>EISBN: 9798350365474</identifier><identifier>DOI: 10.1109/CVPRW63382.2024.00207</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Alignment ; Audio modality ; Bridges ; Codes ; Computer vision ; Conferences ; Fusion ; LLM ; Multimodal learning ; Question answering (information retrieval) ; Social Interation ; Video QA ; Visualization</subject><ispartof>2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2024, p.2018-2027</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10678502$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27904,54534,54911</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10678502$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Agrawal, Aviral</creatorcontrib><creatorcontrib>Samudio Lezcano, Carlos Mateo</creatorcontrib><creatorcontrib>Balam Heredia-Marin, Iqui</creatorcontrib><creatorcontrib>Sethi, Prabhdeep Singh</creatorcontrib><title>Listen Then See: Video Alignment with Speaker Attention</title><title>2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</title><addtitle>CVPRW</addtitle><description>Video-based Question Answering (Video QA) is a challenging task and becomes even more intricate when addressing Socially Intelligent Question Answering (SIQA). SIQA requires context understanding, temporal reasoning, and the integration of multimodal information, but in addition, it requires processing nuanced human behavior. Furthermore, the complexities involved are exacerbated by the dominance of the primary modality (text) over the others. Thus, there is a need to help the task's secondary modalities to work in tandem with the primary modality. In this work, we introduce a cross-modal alignment and subsequent representation fusion approach that achieves state-of-the-art results (82.06% accuracy) on the Social IQ 2.0 dataset for SIQA. Our approach exhibits an improved ability to leverage the video modality by using the audio modality as a bridge with the language modality. This leads to enhanced performance by reducing the prevalent issue of language overfitting and resultant video modality bypassing encountered by current existing techniques. Our code and models are publicly available at [1].</description><subject>Accuracy</subject><subject>Alignment</subject><subject>Audio modality</subject><subject>Bridges</subject><subject>Codes</subject><subject>Computer vision</subject><subject>Conferences</subject><subject>Fusion</subject><subject>LLM</subject><subject>Multimodal learning</subject><subject>Question answering (information retrieval)</subject><subject>Social Interation</subject><subject>Video QA</subject><subject>Visualization</subject><issn>2160-7516</issn><isbn>9798350365474</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjt1Kw0AQRldBsNS8gcK-QOLsz-xkvQtBrRBQbKiXJTGzdrVNSxIQ396A3pzv5vBxhLhRkCkF_rbcvLy-OWNynWnQNgPQQGci8eRzg2AcWrLnYqGVg5RQuUuRjOMnACjIEb1ZCKriOHEv692MNfOd3MSOj7LYx4_-wP0kv-O0k-sTN188yGKa5Ske-ytxEZr9yMn_LkX9cF-Xq7R6fnwqiyqNLqeUbUtAne0abX1ACq1TaBxpRGYMdo7GjjX6lsLsgFUhvDde5xig09aapbj-u43MvD0N8dAMP1sFjnIEbX4B7ypGqA</recordid><startdate>20240617</startdate><enddate>20240617</enddate><creator>Agrawal, Aviral</creator><creator>Samudio Lezcano, Carlos Mateo</creator><creator>Balam Heredia-Marin, Iqui</creator><creator>Sethi, Prabhdeep Singh</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240617</creationdate><title>Listen Then See: Video Alignment with Speaker Attention</title><author>Agrawal, Aviral ; Samudio Lezcano, Carlos Mateo ; Balam Heredia-Marin, Iqui ; Sethi, Prabhdeep Singh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i687-e4b707d4da249f57fb615367255ee5f40245de259b7fda2041ffca9285f0d2443</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Alignment</topic><topic>Audio modality</topic><topic>Bridges</topic><topic>Codes</topic><topic>Computer vision</topic><topic>Conferences</topic><topic>Fusion</topic><topic>LLM</topic><topic>Multimodal learning</topic><topic>Question answering (information retrieval)</topic><topic>Social Interation</topic><topic>Video QA</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Agrawal, Aviral</creatorcontrib><creatorcontrib>Samudio Lezcano, Carlos Mateo</creatorcontrib><creatorcontrib>Balam Heredia-Marin, Iqui</creatorcontrib><creatorcontrib>Sethi, Prabhdeep Singh</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Agrawal, Aviral</au><au>Samudio Lezcano, Carlos Mateo</au><au>Balam Heredia-Marin, Iqui</au><au>Sethi, Prabhdeep Singh</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Listen Then See: Video Alignment with Speaker Attention</atitle><btitle>2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</btitle><stitle>CVPRW</stitle><date>2024-06-17</date><risdate>2024</risdate><spage>2018</spage><epage>2027</epage><pages>2018-2027</pages><eissn>2160-7516</eissn><eisbn>9798350365474</eisbn><coden>IEEPAD</coden><abstract>Video-based Question Answering (Video QA) is a challenging task and becomes even more intricate when addressing Socially Intelligent Question Answering (SIQA). SIQA requires context understanding, temporal reasoning, and the integration of multimodal information, but in addition, it requires processing nuanced human behavior. Furthermore, the complexities involved are exacerbated by the dominance of the primary modality (text) over the others. Thus, there is a need to help the task's secondary modalities to work in tandem with the primary modality. In this work, we introduce a cross-modal alignment and subsequent representation fusion approach that achieves state-of-the-art results (82.06% accuracy) on the Social IQ 2.0 dataset for SIQA. Our approach exhibits an improved ability to leverage the video modality by using the audio modality as a bridge with the language modality. This leads to enhanced performance by reducing the prevalent issue of language overfitting and resultant video modality bypassing encountered by current existing techniques. Our code and models are publicly available at [1].</abstract><pub>IEEE</pub><doi>10.1109/CVPRW63382.2024.00207</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2160-7516 |
ispartof | 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2024, p.2018-2027 |
issn | 2160-7516 |
language | eng |
recordid | cdi_ieee_primary_10678502 |
source | IEEE Xplore All Conference Series |
subjects | Accuracy Alignment Audio modality Bridges Codes Computer vision Conferences Fusion LLM Multimodal learning Question answering (information retrieval) Social Interation Video QA Visualization |
title | Listen Then See: Video Alignment with Speaker Attention |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A32%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Listen%20Then%20See:%20Video%20Alignment%20with%20Speaker%20Attention&rft.btitle=2024%20IEEE/CVF%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20Workshops%20(CVPRW)&rft.au=Agrawal,%20Aviral&rft.date=2024-06-17&rft.spage=2018&rft.epage=2027&rft.pages=2018-2027&rft.eissn=2160-7516&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CVPRW63382.2024.00207&rft.eisbn=9798350365474&rft_dat=%3Cieee_CHZPO%3E10678502%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i687-e4b707d4da249f57fb615367255ee5f40245de259b7fda2041ffca9285f0d2443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10678502&rfr_iscdi=true |