Loading…

CONDA: Continual Unsupervised Domain Adaptation Learning in Visual Perception for Self-Driving Cars

Although unsupervised domain adaptation methods have achieved remarkable performance in semantic scene segmentation, these approaches remain impractical in real-world use cases. In practice, the segmentation models may encounter new data that have not been seen yet. Also, the previous data training...

Full description

Saved in:
Bibliographic Details
Main Authors: Truong, Thanh-Dat, Helton, Pierce, Moustafa, Ahmed, Cothren, Jackson David, Luu, Khoa
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5650
container_issue
container_start_page 5642
container_title
container_volume
creator Truong, Thanh-Dat
Helton, Pierce
Moustafa, Ahmed
Cothren, Jackson David
Luu, Khoa
description Although unsupervised domain adaptation methods have achieved remarkable performance in semantic scene segmentation, these approaches remain impractical in real-world use cases. In practice, the segmentation models may encounter new data that have not been seen yet. Also, the previous data training of segmentation models may be inaccessible due to privacy problems. Therefore, to address these problems, in this work, we propose a Continual Unsupervised Domain Adaptation (CONDA) approach that allows the model to continuously learn and adapt with respect to the presence of the new data. Moreover, our proposed approach is designed without the requirement of accessing previous training data. To avoid the catastrophic forgetting problem and maintain the performance of the segmentation models, we present a novel Bijective Maximum Likelihood loss to impose the constraint of predicted segmentation distribution shifts. The experimental results on the benchmark of continual unsupervised domain adaptation have shown the advanced performance of the proposed CONDA method.
doi_str_mv 10.1109/CVPRW63382.2024.00573
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10678629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10678629</ieee_id><sourcerecordid>10678629</sourcerecordid><originalsourceid>FETCH-LOGICAL-i683-b29fff005b2ce1d042ad05672a3b3fce629e89adcc1697d794edb336e063e0c73</originalsourceid><addsrcrecordid>eNotj91KAzEUhKMgWGrfQCEvsPUk2SQb78rWPyi2aK2XJZucSKTNLtm24NvbqlcDM_MNDCE3DMaMgbmtV4vXDyVExccceDkGkFqckZHRphIShJKlLs_JgDMFhZZMXZJR338BAINKSiMGxNXzl-nkjtZt2sW0txv6nvp9h_kQe_R02m5tTHTibbezu9gmOkObU0yf9GivYn8iFpgddr9paDN9w00opjkeTq3a5v6KXAS76XH0r0OyfLhf1k_FbP74XE9mRVSVKBpuQgjHCw13yDyU3HqQSnMrGhEcKm6wMtY7x5TRXpsSfSOEQlACwWkxJNd_sxER112OW5u_1wyUro6s-AEG9FeR</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>CONDA: Continual Unsupervised Domain Adaptation Learning in Visual Perception for Self-Driving Cars</title><source>IEEE Xplore All Conference Series</source><creator>Truong, Thanh-Dat ; Helton, Pierce ; Moustafa, Ahmed ; Cothren, Jackson David ; Luu, Khoa</creator><creatorcontrib>Truong, Thanh-Dat ; Helton, Pierce ; Moustafa, Ahmed ; Cothren, Jackson David ; Luu, Khoa</creatorcontrib><description>Although unsupervised domain adaptation methods have achieved remarkable performance in semantic scene segmentation, these approaches remain impractical in real-world use cases. In practice, the segmentation models may encounter new data that have not been seen yet. Also, the previous data training of segmentation models may be inaccessible due to privacy problems. Therefore, to address these problems, in this work, we propose a Continual Unsupervised Domain Adaptation (CONDA) approach that allows the model to continuously learn and adapt with respect to the presence of the new data. Moreover, our proposed approach is designed without the requirement of accessing previous training data. To avoid the catastrophic forgetting problem and maintain the performance of the segmentation models, we present a novel Bijective Maximum Likelihood loss to impose the constraint of predicted segmentation distribution shifts. The experimental results on the benchmark of continual unsupervised domain adaptation have shown the advanced performance of the proposed CONDA method.</description><identifier>EISSN: 2160-7516</identifier><identifier>EISBN: 9798350365474</identifier><identifier>DOI: 10.1109/CVPRW63382.2024.00573</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Benchmark testing ; Data privacy ; Predictive models ; Semantics ; Training ; Training data</subject><ispartof>2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2024, p.5642-5650</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10678629$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10678629$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Truong, Thanh-Dat</creatorcontrib><creatorcontrib>Helton, Pierce</creatorcontrib><creatorcontrib>Moustafa, Ahmed</creatorcontrib><creatorcontrib>Cothren, Jackson David</creatorcontrib><creatorcontrib>Luu, Khoa</creatorcontrib><title>CONDA: Continual Unsupervised Domain Adaptation Learning in Visual Perception for Self-Driving Cars</title><title>2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</title><addtitle>CVPRW</addtitle><description>Although unsupervised domain adaptation methods have achieved remarkable performance in semantic scene segmentation, these approaches remain impractical in real-world use cases. In practice, the segmentation models may encounter new data that have not been seen yet. Also, the previous data training of segmentation models may be inaccessible due to privacy problems. Therefore, to address these problems, in this work, we propose a Continual Unsupervised Domain Adaptation (CONDA) approach that allows the model to continuously learn and adapt with respect to the presence of the new data. Moreover, our proposed approach is designed without the requirement of accessing previous training data. To avoid the catastrophic forgetting problem and maintain the performance of the segmentation models, we present a novel Bijective Maximum Likelihood loss to impose the constraint of predicted segmentation distribution shifts. The experimental results on the benchmark of continual unsupervised domain adaptation have shown the advanced performance of the proposed CONDA method.</description><subject>Adaptation models</subject><subject>Benchmark testing</subject><subject>Data privacy</subject><subject>Predictive models</subject><subject>Semantics</subject><subject>Training</subject><subject>Training data</subject><issn>2160-7516</issn><isbn>9798350365474</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj91KAzEUhKMgWGrfQCEvsPUk2SQb78rWPyi2aK2XJZucSKTNLtm24NvbqlcDM_MNDCE3DMaMgbmtV4vXDyVExccceDkGkFqckZHRphIShJKlLs_JgDMFhZZMXZJR338BAINKSiMGxNXzl-nkjtZt2sW0txv6nvp9h_kQe_R02m5tTHTibbezu9gmOkObU0yf9GivYn8iFpgddr9paDN9w00opjkeTq3a5v6KXAS76XH0r0OyfLhf1k_FbP74XE9mRVSVKBpuQgjHCw13yDyU3HqQSnMrGhEcKm6wMtY7x5TRXpsSfSOEQlACwWkxJNd_sxER112OW5u_1wyUro6s-AEG9FeR</recordid><startdate>20240617</startdate><enddate>20240617</enddate><creator>Truong, Thanh-Dat</creator><creator>Helton, Pierce</creator><creator>Moustafa, Ahmed</creator><creator>Cothren, Jackson David</creator><creator>Luu, Khoa</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240617</creationdate><title>CONDA: Continual Unsupervised Domain Adaptation Learning in Visual Perception for Self-Driving Cars</title><author>Truong, Thanh-Dat ; Helton, Pierce ; Moustafa, Ahmed ; Cothren, Jackson David ; Luu, Khoa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i683-b29fff005b2ce1d042ad05672a3b3fce629e89adcc1697d794edb336e063e0c73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Benchmark testing</topic><topic>Data privacy</topic><topic>Predictive models</topic><topic>Semantics</topic><topic>Training</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Truong, Thanh-Dat</creatorcontrib><creatorcontrib>Helton, Pierce</creatorcontrib><creatorcontrib>Moustafa, Ahmed</creatorcontrib><creatorcontrib>Cothren, Jackson David</creatorcontrib><creatorcontrib>Luu, Khoa</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Truong, Thanh-Dat</au><au>Helton, Pierce</au><au>Moustafa, Ahmed</au><au>Cothren, Jackson David</au><au>Luu, Khoa</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>CONDA: Continual Unsupervised Domain Adaptation Learning in Visual Perception for Self-Driving Cars</atitle><btitle>2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</btitle><stitle>CVPRW</stitle><date>2024-06-17</date><risdate>2024</risdate><spage>5642</spage><epage>5650</epage><pages>5642-5650</pages><eissn>2160-7516</eissn><eisbn>9798350365474</eisbn><coden>IEEPAD</coden><abstract>Although unsupervised domain adaptation methods have achieved remarkable performance in semantic scene segmentation, these approaches remain impractical in real-world use cases. In practice, the segmentation models may encounter new data that have not been seen yet. Also, the previous data training of segmentation models may be inaccessible due to privacy problems. Therefore, to address these problems, in this work, we propose a Continual Unsupervised Domain Adaptation (CONDA) approach that allows the model to continuously learn and adapt with respect to the presence of the new data. Moreover, our proposed approach is designed without the requirement of accessing previous training data. To avoid the catastrophic forgetting problem and maintain the performance of the segmentation models, we present a novel Bijective Maximum Likelihood loss to impose the constraint of predicted segmentation distribution shifts. The experimental results on the benchmark of continual unsupervised domain adaptation have shown the advanced performance of the proposed CONDA method.</abstract><pub>IEEE</pub><doi>10.1109/CVPRW63382.2024.00573</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2160-7516
ispartof 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2024, p.5642-5650
issn 2160-7516
language eng
recordid cdi_ieee_primary_10678629
source IEEE Xplore All Conference Series
subjects Adaptation models
Benchmark testing
Data privacy
Predictive models
Semantics
Training
Training data
title CONDA: Continual Unsupervised Domain Adaptation Learning in Visual Perception for Self-Driving Cars
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A46%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=CONDA:%20Continual%20Unsupervised%20Domain%20Adaptation%20Learning%20in%20Visual%20Perception%20for%20Self-Driving%20Cars&rft.btitle=2024%20IEEE/CVF%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20Workshops%20(CVPRW)&rft.au=Truong,%20Thanh-Dat&rft.date=2024-06-17&rft.spage=5642&rft.epage=5650&rft.pages=5642-5650&rft.eissn=2160-7516&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CVPRW63382.2024.00573&rft.eisbn=9798350365474&rft_dat=%3Cieee_CHZPO%3E10678629%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i683-b29fff005b2ce1d042ad05672a3b3fce629e89adcc1697d794edb336e063e0c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10678629&rfr_iscdi=true