Loading…
CONDA: Continual Unsupervised Domain Adaptation Learning in Visual Perception for Self-Driving Cars
Although unsupervised domain adaptation methods have achieved remarkable performance in semantic scene segmentation, these approaches remain impractical in real-world use cases. In practice, the segmentation models may encounter new data that have not been seen yet. Also, the previous data training...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5650 |
container_issue | |
container_start_page | 5642 |
container_title | |
container_volume | |
creator | Truong, Thanh-Dat Helton, Pierce Moustafa, Ahmed Cothren, Jackson David Luu, Khoa |
description | Although unsupervised domain adaptation methods have achieved remarkable performance in semantic scene segmentation, these approaches remain impractical in real-world use cases. In practice, the segmentation models may encounter new data that have not been seen yet. Also, the previous data training of segmentation models may be inaccessible due to privacy problems. Therefore, to address these problems, in this work, we propose a Continual Unsupervised Domain Adaptation (CONDA) approach that allows the model to continuously learn and adapt with respect to the presence of the new data. Moreover, our proposed approach is designed without the requirement of accessing previous training data. To avoid the catastrophic forgetting problem and maintain the performance of the segmentation models, we present a novel Bijective Maximum Likelihood loss to impose the constraint of predicted segmentation distribution shifts. The experimental results on the benchmark of continual unsupervised domain adaptation have shown the advanced performance of the proposed CONDA method. |
doi_str_mv | 10.1109/CVPRW63382.2024.00573 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10678629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10678629</ieee_id><sourcerecordid>10678629</sourcerecordid><originalsourceid>FETCH-LOGICAL-i683-b29fff005b2ce1d042ad05672a3b3fce629e89adcc1697d794edb336e063e0c73</originalsourceid><addsrcrecordid>eNotj91KAzEUhKMgWGrfQCEvsPUk2SQb78rWPyi2aK2XJZucSKTNLtm24NvbqlcDM_MNDCE3DMaMgbmtV4vXDyVExccceDkGkFqckZHRphIShJKlLs_JgDMFhZZMXZJR338BAINKSiMGxNXzl-nkjtZt2sW0txv6nvp9h_kQe_R02m5tTHTibbezu9gmOkObU0yf9GivYn8iFpgddr9paDN9w00opjkeTq3a5v6KXAS76XH0r0OyfLhf1k_FbP74XE9mRVSVKBpuQgjHCw13yDyU3HqQSnMrGhEcKm6wMtY7x5TRXpsSfSOEQlACwWkxJNd_sxER112OW5u_1wyUro6s-AEG9FeR</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>CONDA: Continual Unsupervised Domain Adaptation Learning in Visual Perception for Self-Driving Cars</title><source>IEEE Xplore All Conference Series</source><creator>Truong, Thanh-Dat ; Helton, Pierce ; Moustafa, Ahmed ; Cothren, Jackson David ; Luu, Khoa</creator><creatorcontrib>Truong, Thanh-Dat ; Helton, Pierce ; Moustafa, Ahmed ; Cothren, Jackson David ; Luu, Khoa</creatorcontrib><description>Although unsupervised domain adaptation methods have achieved remarkable performance in semantic scene segmentation, these approaches remain impractical in real-world use cases. In practice, the segmentation models may encounter new data that have not been seen yet. Also, the previous data training of segmentation models may be inaccessible due to privacy problems. Therefore, to address these problems, in this work, we propose a Continual Unsupervised Domain Adaptation (CONDA) approach that allows the model to continuously learn and adapt with respect to the presence of the new data. Moreover, our proposed approach is designed without the requirement of accessing previous training data. To avoid the catastrophic forgetting problem and maintain the performance of the segmentation models, we present a novel Bijective Maximum Likelihood loss to impose the constraint of predicted segmentation distribution shifts. The experimental results on the benchmark of continual unsupervised domain adaptation have shown the advanced performance of the proposed CONDA method.</description><identifier>EISSN: 2160-7516</identifier><identifier>EISBN: 9798350365474</identifier><identifier>DOI: 10.1109/CVPRW63382.2024.00573</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Benchmark testing ; Data privacy ; Predictive models ; Semantics ; Training ; Training data</subject><ispartof>2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2024, p.5642-5650</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10678629$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10678629$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Truong, Thanh-Dat</creatorcontrib><creatorcontrib>Helton, Pierce</creatorcontrib><creatorcontrib>Moustafa, Ahmed</creatorcontrib><creatorcontrib>Cothren, Jackson David</creatorcontrib><creatorcontrib>Luu, Khoa</creatorcontrib><title>CONDA: Continual Unsupervised Domain Adaptation Learning in Visual Perception for Self-Driving Cars</title><title>2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</title><addtitle>CVPRW</addtitle><description>Although unsupervised domain adaptation methods have achieved remarkable performance in semantic scene segmentation, these approaches remain impractical in real-world use cases. In practice, the segmentation models may encounter new data that have not been seen yet. Also, the previous data training of segmentation models may be inaccessible due to privacy problems. Therefore, to address these problems, in this work, we propose a Continual Unsupervised Domain Adaptation (CONDA) approach that allows the model to continuously learn and adapt with respect to the presence of the new data. Moreover, our proposed approach is designed without the requirement of accessing previous training data. To avoid the catastrophic forgetting problem and maintain the performance of the segmentation models, we present a novel Bijective Maximum Likelihood loss to impose the constraint of predicted segmentation distribution shifts. The experimental results on the benchmark of continual unsupervised domain adaptation have shown the advanced performance of the proposed CONDA method.</description><subject>Adaptation models</subject><subject>Benchmark testing</subject><subject>Data privacy</subject><subject>Predictive models</subject><subject>Semantics</subject><subject>Training</subject><subject>Training data</subject><issn>2160-7516</issn><isbn>9798350365474</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj91KAzEUhKMgWGrfQCEvsPUk2SQb78rWPyi2aK2XJZucSKTNLtm24NvbqlcDM_MNDCE3DMaMgbmtV4vXDyVExccceDkGkFqckZHRphIShJKlLs_JgDMFhZZMXZJR338BAINKSiMGxNXzl-nkjtZt2sW0txv6nvp9h_kQe_R02m5tTHTibbezu9gmOkObU0yf9GivYn8iFpgddr9paDN9w00opjkeTq3a5v6KXAS76XH0r0OyfLhf1k_FbP74XE9mRVSVKBpuQgjHCw13yDyU3HqQSnMrGhEcKm6wMtY7x5TRXpsSfSOEQlACwWkxJNd_sxER112OW5u_1wyUro6s-AEG9FeR</recordid><startdate>20240617</startdate><enddate>20240617</enddate><creator>Truong, Thanh-Dat</creator><creator>Helton, Pierce</creator><creator>Moustafa, Ahmed</creator><creator>Cothren, Jackson David</creator><creator>Luu, Khoa</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240617</creationdate><title>CONDA: Continual Unsupervised Domain Adaptation Learning in Visual Perception for Self-Driving Cars</title><author>Truong, Thanh-Dat ; Helton, Pierce ; Moustafa, Ahmed ; Cothren, Jackson David ; Luu, Khoa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i683-b29fff005b2ce1d042ad05672a3b3fce629e89adcc1697d794edb336e063e0c73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Benchmark testing</topic><topic>Data privacy</topic><topic>Predictive models</topic><topic>Semantics</topic><topic>Training</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Truong, Thanh-Dat</creatorcontrib><creatorcontrib>Helton, Pierce</creatorcontrib><creatorcontrib>Moustafa, Ahmed</creatorcontrib><creatorcontrib>Cothren, Jackson David</creatorcontrib><creatorcontrib>Luu, Khoa</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Truong, Thanh-Dat</au><au>Helton, Pierce</au><au>Moustafa, Ahmed</au><au>Cothren, Jackson David</au><au>Luu, Khoa</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>CONDA: Continual Unsupervised Domain Adaptation Learning in Visual Perception for Self-Driving Cars</atitle><btitle>2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</btitle><stitle>CVPRW</stitle><date>2024-06-17</date><risdate>2024</risdate><spage>5642</spage><epage>5650</epage><pages>5642-5650</pages><eissn>2160-7516</eissn><eisbn>9798350365474</eisbn><coden>IEEPAD</coden><abstract>Although unsupervised domain adaptation methods have achieved remarkable performance in semantic scene segmentation, these approaches remain impractical in real-world use cases. In practice, the segmentation models may encounter new data that have not been seen yet. Also, the previous data training of segmentation models may be inaccessible due to privacy problems. Therefore, to address these problems, in this work, we propose a Continual Unsupervised Domain Adaptation (CONDA) approach that allows the model to continuously learn and adapt with respect to the presence of the new data. Moreover, our proposed approach is designed without the requirement of accessing previous training data. To avoid the catastrophic forgetting problem and maintain the performance of the segmentation models, we present a novel Bijective Maximum Likelihood loss to impose the constraint of predicted segmentation distribution shifts. The experimental results on the benchmark of continual unsupervised domain adaptation have shown the advanced performance of the proposed CONDA method.</abstract><pub>IEEE</pub><doi>10.1109/CVPRW63382.2024.00573</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2160-7516 |
ispartof | 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2024, p.5642-5650 |
issn | 2160-7516 |
language | eng |
recordid | cdi_ieee_primary_10678629 |
source | IEEE Xplore All Conference Series |
subjects | Adaptation models Benchmark testing Data privacy Predictive models Semantics Training Training data |
title | CONDA: Continual Unsupervised Domain Adaptation Learning in Visual Perception for Self-Driving Cars |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A46%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=CONDA:%20Continual%20Unsupervised%20Domain%20Adaptation%20Learning%20in%20Visual%20Perception%20for%20Self-Driving%20Cars&rft.btitle=2024%20IEEE/CVF%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20Workshops%20(CVPRW)&rft.au=Truong,%20Thanh-Dat&rft.date=2024-06-17&rft.spage=5642&rft.epage=5650&rft.pages=5642-5650&rft.eissn=2160-7516&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CVPRW63382.2024.00573&rft.eisbn=9798350365474&rft_dat=%3Cieee_CHZPO%3E10678629%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i683-b29fff005b2ce1d042ad05672a3b3fce629e89adcc1697d794edb336e063e0c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10678629&rfr_iscdi=true |