Loading…

Top Research Challenges and Opportunities for Near Real-Time Extreme-Scale Visualization of Scientific Data

The rapid advancement in scientific simulations and experimental facilities has resulted in the generation of vast amounts of data at unprecedented scales. The analysis and visualization of large amounts of data is a challenge in and of itself, but the requirements for timeliness significantly magni...

Full description

Saved in:
Bibliographic Details
Main Authors: Pugmire, David, Moreland, Kenneth, Athawale, Tushar M., Hammer, James, Huang, Jian
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Pugmire, David
Moreland, Kenneth
Athawale, Tushar M.
Hammer, James
Huang, Jian
description The rapid advancement in scientific simulations and experimental facilities has resulted in the generation of vast amounts of data at unprecedented scales. The analysis and visualization of large amounts of data is a challenge in and of itself, but the requirements for timeliness significantly magnify these difficulties. Near real-time visualization is critical to monitor and analyze the data produced by these large facilities, but current production tools are not well-suited to these requirements. In this position paper, we share our perspective on some of the challenges, and thus, opportunities for research that stand in the way of near-real-time visualization of large scientific data.
doi_str_mv 10.1109/e-Science62913.2024.10678727
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10678727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10678727</ieee_id><sourcerecordid>10678727</sourcerecordid><originalsourceid>FETCH-LOGICAL-i106t-51d68d3f6815758614ed84699c9324319eda1d24f3dcfadab6385f836d05af793</originalsourceid><addsrcrecordid>eNo1kEtLw0AUhUdBsNT-AxezcJs6MzfzWkqtDygWNLot18wdO5omIUlB_fXG1-rA4XD4zmHsTIq5lMKfU_ZQJqpLMspLmCuh8rkUxjqr7AGbeesdaAFGGykO2USB0hlYAcds1vevQghQUloDE_ZWNC2_p56wK7d8scWqovqFeo514Ou2bbphX6chjU5sOn435sY4VlmRdsSX70NHu28arIg_pX6PVfrEITU1byL_gRxSTCW_xAFP2FHEqqfZn07Z49WyWNxkq_X17eJilaVxw5BpGYwLEI2T2mpnZE7B5cb70oPKQXoKKIPKI4QyYsBnA05HByYIjdF6mLLT395ERJu2SzvsPjb__8AXk8Jc1g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Top Research Challenges and Opportunities for Near Real-Time Extreme-Scale Visualization of Scientific Data</title><source>IEEE Xplore All Conference Series</source><creator>Pugmire, David ; Moreland, Kenneth ; Athawale, Tushar M. ; Hammer, James ; Huang, Jian</creator><creatorcontrib>Pugmire, David ; Moreland, Kenneth ; Athawale, Tushar M. ; Hammer, James ; Huang, Jian</creatorcontrib><description>The rapid advancement in scientific simulations and experimental facilities has resulted in the generation of vast amounts of data at unprecedented scales. The analysis and visualization of large amounts of data is a challenge in and of itself, but the requirements for timeliness significantly magnify these difficulties. Near real-time visualization is critical to monitor and analyze the data produced by these large facilities, but current production tools are not well-suited to these requirements. In this position paper, we share our perspective on some of the challenges, and thus, opportunities for research that stand in the way of near-real-time visualization of large scientific data.</description><identifier>EISSN: 2325-3703</identifier><identifier>EISBN: 9798350365610</identifier><identifier>DOI: 10.1109/e-Science62913.2024.10678727</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data models ; Data visualization ; Human-computer Interactions ; Monitoring ; Production ; Real-time systems ; Visualization</subject><ispartof>2024 IEEE 20th International Conference on e-Science (e-Science), 2024, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10678727$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10678727$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pugmire, David</creatorcontrib><creatorcontrib>Moreland, Kenneth</creatorcontrib><creatorcontrib>Athawale, Tushar M.</creatorcontrib><creatorcontrib>Hammer, James</creatorcontrib><creatorcontrib>Huang, Jian</creatorcontrib><title>Top Research Challenges and Opportunities for Near Real-Time Extreme-Scale Visualization of Scientific Data</title><title>2024 IEEE 20th International Conference on e-Science (e-Science)</title><addtitle>e-Science</addtitle><description>The rapid advancement in scientific simulations and experimental facilities has resulted in the generation of vast amounts of data at unprecedented scales. The analysis and visualization of large amounts of data is a challenge in and of itself, but the requirements for timeliness significantly magnify these difficulties. Near real-time visualization is critical to monitor and analyze the data produced by these large facilities, but current production tools are not well-suited to these requirements. In this position paper, we share our perspective on some of the challenges, and thus, opportunities for research that stand in the way of near-real-time visualization of large scientific data.</description><subject>Data models</subject><subject>Data visualization</subject><subject>Human-computer Interactions</subject><subject>Monitoring</subject><subject>Production</subject><subject>Real-time systems</subject><subject>Visualization</subject><issn>2325-3703</issn><isbn>9798350365610</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kEtLw0AUhUdBsNT-AxezcJs6MzfzWkqtDygWNLot18wdO5omIUlB_fXG1-rA4XD4zmHsTIq5lMKfU_ZQJqpLMspLmCuh8rkUxjqr7AGbeesdaAFGGykO2USB0hlYAcds1vevQghQUloDE_ZWNC2_p56wK7d8scWqovqFeo514Ou2bbphX6chjU5sOn435sY4VlmRdsSX70NHu28arIg_pX6PVfrEITU1byL_gRxSTCW_xAFP2FHEqqfZn07Z49WyWNxkq_X17eJilaVxw5BpGYwLEI2T2mpnZE7B5cb70oPKQXoKKIPKI4QyYsBnA05HByYIjdF6mLLT395ERJu2SzvsPjb__8AXk8Jc1g</recordid><startdate>20240916</startdate><enddate>20240916</enddate><creator>Pugmire, David</creator><creator>Moreland, Kenneth</creator><creator>Athawale, Tushar M.</creator><creator>Hammer, James</creator><creator>Huang, Jian</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240916</creationdate><title>Top Research Challenges and Opportunities for Near Real-Time Extreme-Scale Visualization of Scientific Data</title><author>Pugmire, David ; Moreland, Kenneth ; Athawale, Tushar M. ; Hammer, James ; Huang, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i106t-51d68d3f6815758614ed84699c9324319eda1d24f3dcfadab6385f836d05af793</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data models</topic><topic>Data visualization</topic><topic>Human-computer Interactions</topic><topic>Monitoring</topic><topic>Production</topic><topic>Real-time systems</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Pugmire, David</creatorcontrib><creatorcontrib>Moreland, Kenneth</creatorcontrib><creatorcontrib>Athawale, Tushar M.</creatorcontrib><creatorcontrib>Hammer, James</creatorcontrib><creatorcontrib>Huang, Jian</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pugmire, David</au><au>Moreland, Kenneth</au><au>Athawale, Tushar M.</au><au>Hammer, James</au><au>Huang, Jian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Top Research Challenges and Opportunities for Near Real-Time Extreme-Scale Visualization of Scientific Data</atitle><btitle>2024 IEEE 20th International Conference on e-Science (e-Science)</btitle><stitle>e-Science</stitle><date>2024-09-16</date><risdate>2024</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2325-3703</eissn><eisbn>9798350365610</eisbn><abstract>The rapid advancement in scientific simulations and experimental facilities has resulted in the generation of vast amounts of data at unprecedented scales. The analysis and visualization of large amounts of data is a challenge in and of itself, but the requirements for timeliness significantly magnify these difficulties. Near real-time visualization is critical to monitor and analyze the data produced by these large facilities, but current production tools are not well-suited to these requirements. In this position paper, we share our perspective on some of the challenges, and thus, opportunities for research that stand in the way of near-real-time visualization of large scientific data.</abstract><pub>IEEE</pub><doi>10.1109/e-Science62913.2024.10678727</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2325-3703
ispartof 2024 IEEE 20th International Conference on e-Science (e-Science), 2024, p.1-6
issn 2325-3703
language eng
recordid cdi_ieee_primary_10678727
source IEEE Xplore All Conference Series
subjects Data models
Data visualization
Human-computer Interactions
Monitoring
Production
Real-time systems
Visualization
title Top Research Challenges and Opportunities for Near Real-Time Extreme-Scale Visualization of Scientific Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A02%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Top%20Research%20Challenges%20and%20Opportunities%20for%20Near%20Real-Time%20Extreme-Scale%20Visualization%20of%20Scientific%20Data&rft.btitle=2024%20IEEE%2020th%20International%20Conference%20on%20e-Science%20(e-Science)&rft.au=Pugmire,%20David&rft.date=2024-09-16&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2325-3703&rft_id=info:doi/10.1109/e-Science62913.2024.10678727&rft.eisbn=9798350365610&rft_dat=%3Cieee_CHZPO%3E10678727%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i106t-51d68d3f6815758614ed84699c9324319eda1d24f3dcfadab6385f836d05af793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10678727&rfr_iscdi=true