Loading…
Top Research Challenges and Opportunities for Near Real-Time Extreme-Scale Visualization of Scientific Data
The rapid advancement in scientific simulations and experimental facilities has resulted in the generation of vast amounts of data at unprecedented scales. The analysis and visualization of large amounts of data is a challenge in and of itself, but the requirements for timeliness significantly magni...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Pugmire, David Moreland, Kenneth Athawale, Tushar M. Hammer, James Huang, Jian |
description | The rapid advancement in scientific simulations and experimental facilities has resulted in the generation of vast amounts of data at unprecedented scales. The analysis and visualization of large amounts of data is a challenge in and of itself, but the requirements for timeliness significantly magnify these difficulties. Near real-time visualization is critical to monitor and analyze the data produced by these large facilities, but current production tools are not well-suited to these requirements. In this position paper, we share our perspective on some of the challenges, and thus, opportunities for research that stand in the way of near-real-time visualization of large scientific data. |
doi_str_mv | 10.1109/e-Science62913.2024.10678727 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10678727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10678727</ieee_id><sourcerecordid>10678727</sourcerecordid><originalsourceid>FETCH-LOGICAL-i106t-51d68d3f6815758614ed84699c9324319eda1d24f3dcfadab6385f836d05af793</originalsourceid><addsrcrecordid>eNo1kEtLw0AUhUdBsNT-AxezcJs6MzfzWkqtDygWNLot18wdO5omIUlB_fXG1-rA4XD4zmHsTIq5lMKfU_ZQJqpLMspLmCuh8rkUxjqr7AGbeesdaAFGGykO2USB0hlYAcds1vevQghQUloDE_ZWNC2_p56wK7d8scWqovqFeo514Ou2bbphX6chjU5sOn435sY4VlmRdsSX70NHu28arIg_pX6PVfrEITU1byL_gRxSTCW_xAFP2FHEqqfZn07Z49WyWNxkq_X17eJilaVxw5BpGYwLEI2T2mpnZE7B5cb70oPKQXoKKIPKI4QyYsBnA05HByYIjdF6mLLT395ERJu2SzvsPjb__8AXk8Jc1g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Top Research Challenges and Opportunities for Near Real-Time Extreme-Scale Visualization of Scientific Data</title><source>IEEE Xplore All Conference Series</source><creator>Pugmire, David ; Moreland, Kenneth ; Athawale, Tushar M. ; Hammer, James ; Huang, Jian</creator><creatorcontrib>Pugmire, David ; Moreland, Kenneth ; Athawale, Tushar M. ; Hammer, James ; Huang, Jian</creatorcontrib><description>The rapid advancement in scientific simulations and experimental facilities has resulted in the generation of vast amounts of data at unprecedented scales. The analysis and visualization of large amounts of data is a challenge in and of itself, but the requirements for timeliness significantly magnify these difficulties. Near real-time visualization is critical to monitor and analyze the data produced by these large facilities, but current production tools are not well-suited to these requirements. In this position paper, we share our perspective on some of the challenges, and thus, opportunities for research that stand in the way of near-real-time visualization of large scientific data.</description><identifier>EISSN: 2325-3703</identifier><identifier>EISBN: 9798350365610</identifier><identifier>DOI: 10.1109/e-Science62913.2024.10678727</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data models ; Data visualization ; Human-computer Interactions ; Monitoring ; Production ; Real-time systems ; Visualization</subject><ispartof>2024 IEEE 20th International Conference on e-Science (e-Science), 2024, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10678727$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10678727$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pugmire, David</creatorcontrib><creatorcontrib>Moreland, Kenneth</creatorcontrib><creatorcontrib>Athawale, Tushar M.</creatorcontrib><creatorcontrib>Hammer, James</creatorcontrib><creatorcontrib>Huang, Jian</creatorcontrib><title>Top Research Challenges and Opportunities for Near Real-Time Extreme-Scale Visualization of Scientific Data</title><title>2024 IEEE 20th International Conference on e-Science (e-Science)</title><addtitle>e-Science</addtitle><description>The rapid advancement in scientific simulations and experimental facilities has resulted in the generation of vast amounts of data at unprecedented scales. The analysis and visualization of large amounts of data is a challenge in and of itself, but the requirements for timeliness significantly magnify these difficulties. Near real-time visualization is critical to monitor and analyze the data produced by these large facilities, but current production tools are not well-suited to these requirements. In this position paper, we share our perspective on some of the challenges, and thus, opportunities for research that stand in the way of near-real-time visualization of large scientific data.</description><subject>Data models</subject><subject>Data visualization</subject><subject>Human-computer Interactions</subject><subject>Monitoring</subject><subject>Production</subject><subject>Real-time systems</subject><subject>Visualization</subject><issn>2325-3703</issn><isbn>9798350365610</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kEtLw0AUhUdBsNT-AxezcJs6MzfzWkqtDygWNLot18wdO5omIUlB_fXG1-rA4XD4zmHsTIq5lMKfU_ZQJqpLMspLmCuh8rkUxjqr7AGbeesdaAFGGykO2USB0hlYAcds1vevQghQUloDE_ZWNC2_p56wK7d8scWqovqFeo514Ou2bbphX6chjU5sOn435sY4VlmRdsSX70NHu28arIg_pX6PVfrEITU1byL_gRxSTCW_xAFP2FHEqqfZn07Z49WyWNxkq_X17eJilaVxw5BpGYwLEI2T2mpnZE7B5cb70oPKQXoKKIPKI4QyYsBnA05HByYIjdF6mLLT395ERJu2SzvsPjb__8AXk8Jc1g</recordid><startdate>20240916</startdate><enddate>20240916</enddate><creator>Pugmire, David</creator><creator>Moreland, Kenneth</creator><creator>Athawale, Tushar M.</creator><creator>Hammer, James</creator><creator>Huang, Jian</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240916</creationdate><title>Top Research Challenges and Opportunities for Near Real-Time Extreme-Scale Visualization of Scientific Data</title><author>Pugmire, David ; Moreland, Kenneth ; Athawale, Tushar M. ; Hammer, James ; Huang, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i106t-51d68d3f6815758614ed84699c9324319eda1d24f3dcfadab6385f836d05af793</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data models</topic><topic>Data visualization</topic><topic>Human-computer Interactions</topic><topic>Monitoring</topic><topic>Production</topic><topic>Real-time systems</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Pugmire, David</creatorcontrib><creatorcontrib>Moreland, Kenneth</creatorcontrib><creatorcontrib>Athawale, Tushar M.</creatorcontrib><creatorcontrib>Hammer, James</creatorcontrib><creatorcontrib>Huang, Jian</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pugmire, David</au><au>Moreland, Kenneth</au><au>Athawale, Tushar M.</au><au>Hammer, James</au><au>Huang, Jian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Top Research Challenges and Opportunities for Near Real-Time Extreme-Scale Visualization of Scientific Data</atitle><btitle>2024 IEEE 20th International Conference on e-Science (e-Science)</btitle><stitle>e-Science</stitle><date>2024-09-16</date><risdate>2024</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2325-3703</eissn><eisbn>9798350365610</eisbn><abstract>The rapid advancement in scientific simulations and experimental facilities has resulted in the generation of vast amounts of data at unprecedented scales. The analysis and visualization of large amounts of data is a challenge in and of itself, but the requirements for timeliness significantly magnify these difficulties. Near real-time visualization is critical to monitor and analyze the data produced by these large facilities, but current production tools are not well-suited to these requirements. In this position paper, we share our perspective on some of the challenges, and thus, opportunities for research that stand in the way of near-real-time visualization of large scientific data.</abstract><pub>IEEE</pub><doi>10.1109/e-Science62913.2024.10678727</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2325-3703 |
ispartof | 2024 IEEE 20th International Conference on e-Science (e-Science), 2024, p.1-6 |
issn | 2325-3703 |
language | eng |
recordid | cdi_ieee_primary_10678727 |
source | IEEE Xplore All Conference Series |
subjects | Data models Data visualization Human-computer Interactions Monitoring Production Real-time systems Visualization |
title | Top Research Challenges and Opportunities for Near Real-Time Extreme-Scale Visualization of Scientific Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A02%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Top%20Research%20Challenges%20and%20Opportunities%20for%20Near%20Real-Time%20Extreme-Scale%20Visualization%20of%20Scientific%20Data&rft.btitle=2024%20IEEE%2020th%20International%20Conference%20on%20e-Science%20(e-Science)&rft.au=Pugmire,%20David&rft.date=2024-09-16&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2325-3703&rft_id=info:doi/10.1109/e-Science62913.2024.10678727&rft.eisbn=9798350365610&rft_dat=%3Cieee_CHZPO%3E10678727%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i106t-51d68d3f6815758614ed84699c9324319eda1d24f3dcfadab6385f836d05af793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10678727&rfr_iscdi=true |