Loading…

Weight-Constrained Sparse Arrays For Direction of Arrival Estimation Under High Mutual Coupling

In recent years, following the development of nested arrays and coprime arrays, several improved array constructions have been proposed to identify \mathcal{O}(N^{2}) directions with N sensors and to reduce the impact of mutual coupling on the direction of arrival (DOA) estimation. However, having \...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2024, Vol.72, p.4444-4462
Main Authors: Kulkarni, Pranav, Vaidyanathan, P. P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c175t-f88cc434822f0c0884a409137072089536e9bdcf526a9c1fd431dc6004e375ea3
container_end_page 4462
container_issue
container_start_page 4444
container_title IEEE transactions on signal processing
container_volume 72
creator Kulkarni, Pranav
Vaidyanathan, P. P.
description In recent years, following the development of nested arrays and coprime arrays, several improved array constructions have been proposed to identify \mathcal{O}(N^{2}) directions with N sensors and to reduce the impact of mutual coupling on the direction of arrival (DOA) estimation. However, having \mathcal{O}(N^{2}) degrees of freedom may not be of interest, especially for large N. Also, a large aperture of such arrays may not be suitable when limited space is available to place the sensors. This paper presents two types of sparse array designs that can effectively handle high mutual coupling by ensuring that the coarray weights satisfy either w(1)=0 or w(1)=w(2)=0, where w(l) is the number of occurrences of the difference l in the set \{n_{i}-n_{j}\}_{i,j=1}^{N}, and n_{i} are sensors locations. In addition, several other coarray weights are small constants that do not increase with the number of sensors N. The arrays of the first type have an aperture of \mathcal{O}(N) length, making them suitable when the available aperture is restricted and the number of DOAs is also \mathcal{O}(N). These arrays are constructed by appropriately dilating a uniform linear array (ULA) and augmenting a few additional sensors. Despite having an aperture of \mathcal{O}(N) length, these arrays can still identify more than N DOAs. The arrays of the second type have \mathcal{O}(N^{2})
doi_str_mv 10.1109/TSP.2024.3461720
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10681310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10681310</ieee_id><sourcerecordid>3117135552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-f88cc434822f0c0884a409137072089536e9bdcf526a9c1fd431dc6004e375ea3</originalsourceid><addsrcrecordid>eNpNUMtOwzAQjBBIlMedAwdLnFN2YztxjlVoKVIRSG0FN8s4TnFV4mInSP17XNoDp13NzsxqJkluEIaIUN4v5q_DDDI2pCzHIoOTZIAlwxRYkZ_GHThNuSjez5OLENYAyFiZDxL5Zuzqs0sr14bOK9uamsy3ygdDRt6rXSAT58mD9UZ31rXENXvc_qgNGYfOfqk_dNnWxpNpdCLPfdfHY-X67ca2q6vkrFGbYK6P8zJZTsaLaprOXh6fqtEs1VjwLm2E0JpRJrKsAQ1CMMWgRFpAjCJKTnNTftS64VmuSo1NzSjWOgdghhbcKHqZ3B18t9599yZ0cu1638aXkiIWSDnnWWTBgaW9C8GbRm59zOB3EkHua5SxRrmvUR5rjJLbg8QaY_7Rc4EUgf4Cq3xtsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117135552</pqid></control><display><type>article</type><title>Weight-Constrained Sparse Arrays For Direction of Arrival Estimation Under High Mutual Coupling</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Kulkarni, Pranav ; Vaidyanathan, P. P.</creator><creatorcontrib>Kulkarni, Pranav ; Vaidyanathan, P. P.</creatorcontrib><description><![CDATA[In recent years, following the development of nested arrays and coprime arrays, several improved array constructions have been proposed to identify <inline-formula><tex-math notation="LaTeX">\mathcal{O}(N^{2})</tex-math></inline-formula> directions with <inline-formula><tex-math notation="LaTeX">N</tex-math></inline-formula> sensors and to reduce the impact of mutual coupling on the direction of arrival (DOA) estimation. However, having <inline-formula><tex-math notation="LaTeX">\mathcal{O}(N^{2})</tex-math></inline-formula> degrees of freedom may not be of interest, especially for large <inline-formula><tex-math notation="LaTeX">N</tex-math></inline-formula>. Also, a large aperture of such arrays may not be suitable when limited space is available to place the sensors. This paper presents two types of sparse array designs that can effectively handle high mutual coupling by ensuring that the coarray weights satisfy either <inline-formula><tex-math notation="LaTeX">w(1)=0</tex-math></inline-formula> or <inline-formula><tex-math notation="LaTeX">w(1)=w(2)=0</tex-math></inline-formula>, where <inline-formula><tex-math notation="LaTeX">w(l)</tex-math></inline-formula> is the number of occurrences of the difference <inline-formula><tex-math notation="LaTeX">l</tex-math></inline-formula> in the set <inline-formula><tex-math notation="LaTeX">\{n_{i}-n_{j}\}_{i,j=1}^{N}</tex-math></inline-formula>, and <inline-formula><tex-math notation="LaTeX">n_{i}</tex-math></inline-formula> are sensors locations. In addition, several other coarray weights are small constants that do not increase with the number of sensors <inline-formula><tex-math notation="LaTeX">N</tex-math></inline-formula>. The arrays of the first type have an aperture of <inline-formula><tex-math notation="LaTeX">\mathcal{O}(N)</tex-math></inline-formula> length, making them suitable when the available aperture is restricted and the number of DOAs is also <inline-formula><tex-math notation="LaTeX">\mathcal{O}(N)</tex-math></inline-formula>. These arrays are constructed by appropriately dilating a uniform linear array (ULA) and augmenting a few additional sensors. Despite having an aperture of <inline-formula><tex-math notation="LaTeX">\mathcal{O}(N)</tex-math></inline-formula> length, these arrays can still identify more than <inline-formula><tex-math notation="LaTeX">N</tex-math></inline-formula> DOAs. The arrays of the second type have <inline-formula><tex-math notation="LaTeX">\mathcal{O}(N^{2})</tex-math></inline-formula> degrees of freedom and are suitable when the aperture is not restricted. These arrays are constructed by appropriately dilating a nested array and augmenting it with several additional sensors. We compare the proposed arrays with those in the literature by analyzing their coarray properties and conducting several Monte-Carlo simulations. Unlike ULA and nested array, any sensor pair in the proposed arrays has a spacing of at least 2 units, because of the coarray hole at lag 1. In the presence of high mutual coupling, the proposed arrays can estimate DOAs with significantly smaller errors when compared to other arrays because of the reduction of coarray weight at critical small-valued lags.]]></description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2024.3461720</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>&lt;inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt; &lt;tex-math notation="LaTeX"&gt; mathcal{O}(N)&lt;/tex-math&gt; &lt;/inline-formula&gt; aperture arrays ; Apertures ; Array signal processing ; Arrays ; Closed-form solutions ; Degrees of freedom ; difference coarray ; Direction of arrival ; Direction-of-arrival estimation ; DOA estimation ; Estimation ; Linear arrays ; Monte Carlo simulation ; Mutual coupling ; Sensor arrays ; Sensors ; Sparse arrays ; weight-constrained nested arrays ; weight-constrained sparse arrays</subject><ispartof>IEEE transactions on signal processing, 2024, Vol.72, p.4444-4462</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-f88cc434822f0c0884a409137072089536e9bdcf526a9c1fd431dc6004e375ea3</cites><orcidid>0000-0003-3003-7042 ; 0000-0002-1461-0948</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10681310$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4021,27921,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Kulkarni, Pranav</creatorcontrib><creatorcontrib>Vaidyanathan, P. P.</creatorcontrib><title>Weight-Constrained Sparse Arrays For Direction of Arrival Estimation Under High Mutual Coupling</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description><![CDATA[In recent years, following the development of nested arrays and coprime arrays, several improved array constructions have been proposed to identify <inline-formula><tex-math notation="LaTeX">\mathcal{O}(N^{2})</tex-math></inline-formula> directions with <inline-formula><tex-math notation="LaTeX">N</tex-math></inline-formula> sensors and to reduce the impact of mutual coupling on the direction of arrival (DOA) estimation. However, having <inline-formula><tex-math notation="LaTeX">\mathcal{O}(N^{2})</tex-math></inline-formula> degrees of freedom may not be of interest, especially for large <inline-formula><tex-math notation="LaTeX">N</tex-math></inline-formula>. Also, a large aperture of such arrays may not be suitable when limited space is available to place the sensors. This paper presents two types of sparse array designs that can effectively handle high mutual coupling by ensuring that the coarray weights satisfy either <inline-formula><tex-math notation="LaTeX">w(1)=0</tex-math></inline-formula> or <inline-formula><tex-math notation="LaTeX">w(1)=w(2)=0</tex-math></inline-formula>, where <inline-formula><tex-math notation="LaTeX">w(l)</tex-math></inline-formula> is the number of occurrences of the difference <inline-formula><tex-math notation="LaTeX">l</tex-math></inline-formula> in the set <inline-formula><tex-math notation="LaTeX">\{n_{i}-n_{j}\}_{i,j=1}^{N}</tex-math></inline-formula>, and <inline-formula><tex-math notation="LaTeX">n_{i}</tex-math></inline-formula> are sensors locations. In addition, several other coarray weights are small constants that do not increase with the number of sensors <inline-formula><tex-math notation="LaTeX">N</tex-math></inline-formula>. The arrays of the first type have an aperture of <inline-formula><tex-math notation="LaTeX">\mathcal{O}(N)</tex-math></inline-formula> length, making them suitable when the available aperture is restricted and the number of DOAs is also <inline-formula><tex-math notation="LaTeX">\mathcal{O}(N)</tex-math></inline-formula>. These arrays are constructed by appropriately dilating a uniform linear array (ULA) and augmenting a few additional sensors. Despite having an aperture of <inline-formula><tex-math notation="LaTeX">\mathcal{O}(N)</tex-math></inline-formula> length, these arrays can still identify more than <inline-formula><tex-math notation="LaTeX">N</tex-math></inline-formula> DOAs. The arrays of the second type have <inline-formula><tex-math notation="LaTeX">\mathcal{O}(N^{2})</tex-math></inline-formula> degrees of freedom and are suitable when the aperture is not restricted. These arrays are constructed by appropriately dilating a nested array and augmenting it with several additional sensors. We compare the proposed arrays with those in the literature by analyzing their coarray properties and conducting several Monte-Carlo simulations. Unlike ULA and nested array, any sensor pair in the proposed arrays has a spacing of at least 2 units, because of the coarray hole at lag 1. In the presence of high mutual coupling, the proposed arrays can estimate DOAs with significantly smaller errors when compared to other arrays because of the reduction of coarray weight at critical small-valued lags.]]></description><subject>&lt;inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt; &lt;tex-math notation="LaTeX"&gt; mathcal{O}(N)&lt;/tex-math&gt; &lt;/inline-formula&gt; aperture arrays</subject><subject>Apertures</subject><subject>Array signal processing</subject><subject>Arrays</subject><subject>Closed-form solutions</subject><subject>Degrees of freedom</subject><subject>difference coarray</subject><subject>Direction of arrival</subject><subject>Direction-of-arrival estimation</subject><subject>DOA estimation</subject><subject>Estimation</subject><subject>Linear arrays</subject><subject>Monte Carlo simulation</subject><subject>Mutual coupling</subject><subject>Sensor arrays</subject><subject>Sensors</subject><subject>Sparse arrays</subject><subject>weight-constrained nested arrays</subject><subject>weight-constrained sparse arrays</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNUMtOwzAQjBBIlMedAwdLnFN2YztxjlVoKVIRSG0FN8s4TnFV4mInSP17XNoDp13NzsxqJkluEIaIUN4v5q_DDDI2pCzHIoOTZIAlwxRYkZ_GHThNuSjez5OLENYAyFiZDxL5Zuzqs0sr14bOK9uamsy3ygdDRt6rXSAT58mD9UZ31rXENXvc_qgNGYfOfqk_dNnWxpNpdCLPfdfHY-X67ca2q6vkrFGbYK6P8zJZTsaLaprOXh6fqtEs1VjwLm2E0JpRJrKsAQ1CMMWgRFpAjCJKTnNTftS64VmuSo1NzSjWOgdghhbcKHqZ3B18t9599yZ0cu1638aXkiIWSDnnWWTBgaW9C8GbRm59zOB3EkHua5SxRrmvUR5rjJLbg8QaY_7Rc4EUgf4Cq3xtsw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Kulkarni, Pranav</creator><creator>Vaidyanathan, P. P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3003-7042</orcidid><orcidid>https://orcid.org/0000-0002-1461-0948</orcidid></search><sort><creationdate>2024</creationdate><title>Weight-Constrained Sparse Arrays For Direction of Arrival Estimation Under High Mutual Coupling</title><author>Kulkarni, Pranav ; Vaidyanathan, P. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-f88cc434822f0c0884a409137072089536e9bdcf526a9c1fd431dc6004e375ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>&lt;inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt; &lt;tex-math notation="LaTeX"&gt; mathcal{O}(N)&lt;/tex-math&gt; &lt;/inline-formula&gt; aperture arrays</topic><topic>Apertures</topic><topic>Array signal processing</topic><topic>Arrays</topic><topic>Closed-form solutions</topic><topic>Degrees of freedom</topic><topic>difference coarray</topic><topic>Direction of arrival</topic><topic>Direction-of-arrival estimation</topic><topic>DOA estimation</topic><topic>Estimation</topic><topic>Linear arrays</topic><topic>Monte Carlo simulation</topic><topic>Mutual coupling</topic><topic>Sensor arrays</topic><topic>Sensors</topic><topic>Sparse arrays</topic><topic>weight-constrained nested arrays</topic><topic>weight-constrained sparse arrays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kulkarni, Pranav</creatorcontrib><creatorcontrib>Vaidyanathan, P. P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kulkarni, Pranav</au><au>Vaidyanathan, P. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weight-Constrained Sparse Arrays For Direction of Arrival Estimation Under High Mutual Coupling</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2024</date><risdate>2024</risdate><volume>72</volume><spage>4444</spage><epage>4462</epage><pages>4444-4462</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract><![CDATA[In recent years, following the development of nested arrays and coprime arrays, several improved array constructions have been proposed to identify <inline-formula><tex-math notation="LaTeX">\mathcal{O}(N^{2})</tex-math></inline-formula> directions with <inline-formula><tex-math notation="LaTeX">N</tex-math></inline-formula> sensors and to reduce the impact of mutual coupling on the direction of arrival (DOA) estimation. However, having <inline-formula><tex-math notation="LaTeX">\mathcal{O}(N^{2})</tex-math></inline-formula> degrees of freedom may not be of interest, especially for large <inline-formula><tex-math notation="LaTeX">N</tex-math></inline-formula>. Also, a large aperture of such arrays may not be suitable when limited space is available to place the sensors. This paper presents two types of sparse array designs that can effectively handle high mutual coupling by ensuring that the coarray weights satisfy either <inline-formula><tex-math notation="LaTeX">w(1)=0</tex-math></inline-formula> or <inline-formula><tex-math notation="LaTeX">w(1)=w(2)=0</tex-math></inline-formula>, where <inline-formula><tex-math notation="LaTeX">w(l)</tex-math></inline-formula> is the number of occurrences of the difference <inline-formula><tex-math notation="LaTeX">l</tex-math></inline-formula> in the set <inline-formula><tex-math notation="LaTeX">\{n_{i}-n_{j}\}_{i,j=1}^{N}</tex-math></inline-formula>, and <inline-formula><tex-math notation="LaTeX">n_{i}</tex-math></inline-formula> are sensors locations. In addition, several other coarray weights are small constants that do not increase with the number of sensors <inline-formula><tex-math notation="LaTeX">N</tex-math></inline-formula>. The arrays of the first type have an aperture of <inline-formula><tex-math notation="LaTeX">\mathcal{O}(N)</tex-math></inline-formula> length, making them suitable when the available aperture is restricted and the number of DOAs is also <inline-formula><tex-math notation="LaTeX">\mathcal{O}(N)</tex-math></inline-formula>. These arrays are constructed by appropriately dilating a uniform linear array (ULA) and augmenting a few additional sensors. Despite having an aperture of <inline-formula><tex-math notation="LaTeX">\mathcal{O}(N)</tex-math></inline-formula> length, these arrays can still identify more than <inline-formula><tex-math notation="LaTeX">N</tex-math></inline-formula> DOAs. The arrays of the second type have <inline-formula><tex-math notation="LaTeX">\mathcal{O}(N^{2})</tex-math></inline-formula> degrees of freedom and are suitable when the aperture is not restricted. These arrays are constructed by appropriately dilating a nested array and augmenting it with several additional sensors. We compare the proposed arrays with those in the literature by analyzing their coarray properties and conducting several Monte-Carlo simulations. Unlike ULA and nested array, any sensor pair in the proposed arrays has a spacing of at least 2 units, because of the coarray hole at lag 1. In the presence of high mutual coupling, the proposed arrays can estimate DOAs with significantly smaller errors when compared to other arrays because of the reduction of coarray weight at critical small-valued lags.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2024.3461720</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-3003-7042</orcidid><orcidid>https://orcid.org/0000-0002-1461-0948</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2024, Vol.72, p.4444-4462
issn 1053-587X
1941-0476
language eng
recordid cdi_ieee_primary_10681310
source IEEE Electronic Library (IEL) Journals
subjects <inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> mathcal{O}(N)</tex-math> </inline-formula> aperture arrays
Apertures
Array signal processing
Arrays
Closed-form solutions
Degrees of freedom
difference coarray
Direction of arrival
Direction-of-arrival estimation
DOA estimation
Estimation
Linear arrays
Monte Carlo simulation
Mutual coupling
Sensor arrays
Sensors
Sparse arrays
weight-constrained nested arrays
weight-constrained sparse arrays
title Weight-Constrained Sparse Arrays For Direction of Arrival Estimation Under High Mutual Coupling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A53%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weight-Constrained%20Sparse%20Arrays%20For%20Direction%20of%20Arrival%20Estimation%20Under%20High%20Mutual%20Coupling&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Kulkarni,%20Pranav&rft.date=2024&rft.volume=72&rft.spage=4444&rft.epage=4462&rft.pages=4444-4462&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2024.3461720&rft_dat=%3Cproquest_ieee_%3E3117135552%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c175t-f88cc434822f0c0884a409137072089536e9bdcf526a9c1fd431dc6004e375ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3117135552&rft_id=info:pmid/&rft_ieee_id=10681310&rfr_iscdi=true