Loading…

E3HDC: Energy Efficient Encoding for Hyper-Dimensional Computing on Edge Devices

Hyper-Dimensional Computing (HDC) as a brain-inspired computational model for cognitive tasks is suitable for edge devices due to its hardware-friendly and fault-resistant computations. Despite this potential, HDC has a large memory footprint, resulting high power consumption. In this work, we propo...

Full description

Saved in:
Bibliographic Details
Main Authors: Roodsari, Mahboobe Sadeghipour, Krautter, Jonas, Meyers, Vincent, Tahoori, Mehdi
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 280
container_issue
container_start_page 274
container_title
container_volume
creator Roodsari, Mahboobe Sadeghipour
Krautter, Jonas
Meyers, Vincent
Tahoori, Mehdi
description Hyper-Dimensional Computing (HDC) as a brain-inspired computational model for cognitive tasks is suitable for edge devices due to its hardware-friendly and fault-resistant computations. Despite this potential, HDC has a large memory footprint, resulting high power consumption. In this work, we propose a hardware-aware encoding where parameters are generated on-the-fly without any large memory block requirements. Moreover, the hardware mapping of the trained HDC model is optimized to make it suitable for resource-constraint edge devices. In this work we propose an end-to-end flow from HDC training to FPGA mapping. We demonstrate the efficiency of this method compared to other state-of-the-art HDC implementations in terms of hardware usage and power consumption.
doi_str_mv 10.1109/FPL64840.2024.00045
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10705518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10705518</ieee_id><sourcerecordid>10705518</sourcerecordid><originalsourceid>FETCH-LOGICAL-i106t-8e0ede5c906902b97b2b0b3351212367dc8c7ee93b93eb5eb173aa29763d9c733</originalsourceid><addsrcrecordid>eNotjM1Kw0AURkdBsNQ-gS7mBVLvzJ1fd5KmRgjYha5LZnJTRtqkJFHI21vR1QfnHD7G7gWshQD_uN1VRjkFawlSrQFA6Su28tY7RKERwOprthBemUwo527Zahw_LxloZZ02C7YrsNzkT7zoaDjMvGjbFBN10wXEvkndgbf9wMv5TEO2SSfqxtR39ZHn_en8Nf36vuNFcyC-oe8UabxjN219HGn1v0v2sS3e8zKr3l5e8-cqSwLMlDkCakhHD8aDDN4GGSAgaiGFRGOb6KIl8hg8UtAUhMW6lt4abHy0iEv28PebiGh_HtKpHua9AAtaC4c_tRFO6w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>E3HDC: Energy Efficient Encoding for Hyper-Dimensional Computing on Edge Devices</title><source>IEEE Xplore All Conference Series</source><creator>Roodsari, Mahboobe Sadeghipour ; Krautter, Jonas ; Meyers, Vincent ; Tahoori, Mehdi</creator><creatorcontrib>Roodsari, Mahboobe Sadeghipour ; Krautter, Jonas ; Meyers, Vincent ; Tahoori, Mehdi</creatorcontrib><description>Hyper-Dimensional Computing (HDC) as a brain-inspired computational model for cognitive tasks is suitable for edge devices due to its hardware-friendly and fault-resistant computations. Despite this potential, HDC has a large memory footprint, resulting high power consumption. In this work, we propose a hardware-aware encoding where parameters are generated on-the-fly without any large memory block requirements. Moreover, the hardware mapping of the trained HDC model is optimized to make it suitable for resource-constraint edge devices. In this work we propose an end-to-end flow from HDC training to FPGA mapping. We demonstrate the efficiency of this method compared to other state-of-the-art HDC implementations in terms of hardware usage and power consumption.</description><identifier>EISSN: 1946-1488</identifier><identifier>EISBN: 9798331530075</identifier><identifier>DOI: 10.1109/FPL64840.2024.00045</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Computational modeling ; configurable design ; edge device ; Encoding ; Energy efficiency ; Field programmable gate arrays ; Hardware ; HDC ; hyperdimensional computing ; Internet of Things ; IoT ; Logic ; low power ; Memory management ; Power demand ; Training</subject><ispartof>2024 34th International Conference on Field-Programmable Logic and Applications (FPL), 2024, p.274-280</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10705518$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10705518$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Roodsari, Mahboobe Sadeghipour</creatorcontrib><creatorcontrib>Krautter, Jonas</creatorcontrib><creatorcontrib>Meyers, Vincent</creatorcontrib><creatorcontrib>Tahoori, Mehdi</creatorcontrib><title>E3HDC: Energy Efficient Encoding for Hyper-Dimensional Computing on Edge Devices</title><title>2024 34th International Conference on Field-Programmable Logic and Applications (FPL)</title><addtitle>FPL</addtitle><description>Hyper-Dimensional Computing (HDC) as a brain-inspired computational model for cognitive tasks is suitable for edge devices due to its hardware-friendly and fault-resistant computations. Despite this potential, HDC has a large memory footprint, resulting high power consumption. In this work, we propose a hardware-aware encoding where parameters are generated on-the-fly without any large memory block requirements. Moreover, the hardware mapping of the trained HDC model is optimized to make it suitable for resource-constraint edge devices. In this work we propose an end-to-end flow from HDC training to FPGA mapping. We demonstrate the efficiency of this method compared to other state-of-the-art HDC implementations in terms of hardware usage and power consumption.</description><subject>Accuracy</subject><subject>Computational modeling</subject><subject>configurable design</subject><subject>edge device</subject><subject>Encoding</subject><subject>Energy efficiency</subject><subject>Field programmable gate arrays</subject><subject>Hardware</subject><subject>HDC</subject><subject>hyperdimensional computing</subject><subject>Internet of Things</subject><subject>IoT</subject><subject>Logic</subject><subject>low power</subject><subject>Memory management</subject><subject>Power demand</subject><subject>Training</subject><issn>1946-1488</issn><isbn>9798331530075</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjM1Kw0AURkdBsNQ-gS7mBVLvzJ1fd5KmRgjYha5LZnJTRtqkJFHI21vR1QfnHD7G7gWshQD_uN1VRjkFawlSrQFA6Su28tY7RKERwOprthBemUwo527Zahw_LxloZZ02C7YrsNzkT7zoaDjMvGjbFBN10wXEvkndgbf9wMv5TEO2SSfqxtR39ZHn_en8Nf36vuNFcyC-oe8UabxjN219HGn1v0v2sS3e8zKr3l5e8-cqSwLMlDkCakhHD8aDDN4GGSAgaiGFRGOb6KIl8hg8UtAUhMW6lt4abHy0iEv28PebiGh_HtKpHua9AAtaC4c_tRFO6w</recordid><startdate>20240902</startdate><enddate>20240902</enddate><creator>Roodsari, Mahboobe Sadeghipour</creator><creator>Krautter, Jonas</creator><creator>Meyers, Vincent</creator><creator>Tahoori, Mehdi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240902</creationdate><title>E3HDC: Energy Efficient Encoding for Hyper-Dimensional Computing on Edge Devices</title><author>Roodsari, Mahboobe Sadeghipour ; Krautter, Jonas ; Meyers, Vincent ; Tahoori, Mehdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i106t-8e0ede5c906902b97b2b0b3351212367dc8c7ee93b93eb5eb173aa29763d9c733</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Computational modeling</topic><topic>configurable design</topic><topic>edge device</topic><topic>Encoding</topic><topic>Energy efficiency</topic><topic>Field programmable gate arrays</topic><topic>Hardware</topic><topic>HDC</topic><topic>hyperdimensional computing</topic><topic>Internet of Things</topic><topic>IoT</topic><topic>Logic</topic><topic>low power</topic><topic>Memory management</topic><topic>Power demand</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Roodsari, Mahboobe Sadeghipour</creatorcontrib><creatorcontrib>Krautter, Jonas</creatorcontrib><creatorcontrib>Meyers, Vincent</creatorcontrib><creatorcontrib>Tahoori, Mehdi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Roodsari, Mahboobe Sadeghipour</au><au>Krautter, Jonas</au><au>Meyers, Vincent</au><au>Tahoori, Mehdi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>E3HDC: Energy Efficient Encoding for Hyper-Dimensional Computing on Edge Devices</atitle><btitle>2024 34th International Conference on Field-Programmable Logic and Applications (FPL)</btitle><stitle>FPL</stitle><date>2024-09-02</date><risdate>2024</risdate><spage>274</spage><epage>280</epage><pages>274-280</pages><eissn>1946-1488</eissn><eisbn>9798331530075</eisbn><coden>IEEPAD</coden><abstract>Hyper-Dimensional Computing (HDC) as a brain-inspired computational model for cognitive tasks is suitable for edge devices due to its hardware-friendly and fault-resistant computations. Despite this potential, HDC has a large memory footprint, resulting high power consumption. In this work, we propose a hardware-aware encoding where parameters are generated on-the-fly without any large memory block requirements. Moreover, the hardware mapping of the trained HDC model is optimized to make it suitable for resource-constraint edge devices. In this work we propose an end-to-end flow from HDC training to FPGA mapping. We demonstrate the efficiency of this method compared to other state-of-the-art HDC implementations in terms of hardware usage and power consumption.</abstract><pub>IEEE</pub><doi>10.1109/FPL64840.2024.00045</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1946-1488
ispartof 2024 34th International Conference on Field-Programmable Logic and Applications (FPL), 2024, p.274-280
issn 1946-1488
language eng
recordid cdi_ieee_primary_10705518
source IEEE Xplore All Conference Series
subjects Accuracy
Computational modeling
configurable design
edge device
Encoding
Energy efficiency
Field programmable gate arrays
Hardware
HDC
hyperdimensional computing
Internet of Things
IoT
Logic
low power
Memory management
Power demand
Training
title E3HDC: Energy Efficient Encoding for Hyper-Dimensional Computing on Edge Devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A18%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=E3HDC:%20Energy%20Efficient%20Encoding%20for%20Hyper-Dimensional%20Computing%20on%20Edge%20Devices&rft.btitle=2024%2034th%20International%20Conference%20on%20Field-Programmable%20Logic%20and%20Applications%20(FPL)&rft.au=Roodsari,%20Mahboobe%20Sadeghipour&rft.date=2024-09-02&rft.spage=274&rft.epage=280&rft.pages=274-280&rft.eissn=1946-1488&rft.coden=IEEPAD&rft_id=info:doi/10.1109/FPL64840.2024.00045&rft.eisbn=9798331530075&rft_dat=%3Cieee_CHZPO%3E10705518%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i106t-8e0ede5c906902b97b2b0b3351212367dc8c7ee93b93eb5eb173aa29763d9c733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10705518&rfr_iscdi=true