Loading…
Graph Convolutional Neural Network Assisted Genetic Algorithm for PDN Decap Optimization
This paper proposes a hybrid algorithm combining reinforcement learning (RL) and a genetic algorithm (GA) for PDN decap optimization. The trained RL agent uses a graph convolutional neural network as a policy network and predicts the decap solution for a given PDN impedance and target impedance, whi...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 150 |
container_issue | |
container_start_page | 146 |
container_title | |
container_volume | |
creator | Manoharan, Haran Juang, Jack Zhang, Ling Wang, Hanfeng Pan, Jingnan Qiu, Kelvin Gao, Xu Hwang, Chulsoon |
description | This paper proposes a hybrid algorithm combining reinforcement learning (RL) and a genetic algorithm (GA) for PDN decap optimization. The trained RL agent uses a graph convolutional neural network as a policy network and predicts the decap solution for a given PDN impedance and target impedance, which is seeded as an initial population to the GA. The trained RL agent is scalable regarding the number of decap ports. The main goal is to save computation time and find the near global minimum or global minimum. Generalization of the algorithm to different decap libraries is achieved through transfer learning, eventually reducing the training time of the RL agent. The proposed algorithm finds a decap solution satisfying target impedance twice as fast compared with genetic algorithms. |
doi_str_mv | 10.1109/EMCSIPI49824.2024.10705608 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10705608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10705608</ieee_id><sourcerecordid>10705608</sourcerecordid><originalsourceid>FETCH-ieee_primary_107056083</originalsourceid><addsrcrecordid>eNqFjs1OwkAURkcTE4j2DVzcuAfu7bRlZknKjyxEEl24IxO4wGjbaWYGDTy9SHTt5juLLzk5QjwQ9olQDyZP5ct8Oc-0SrN-iuchHGJeoLoSiR5qJXOUBUqdXYtuSrnqEZHqiCSEd0Q8KwotqSveZt60eyhd8-mqQ7SuMRUs-OAviF_Of8AoBBsib2DGDUe7hlG1c97GfQ1b52E5XsCY16aF5zba2p7Mj-ZO3GxNFTj55a24n05ey8eeZeZV621t_HH1Fy3_ub8B3opGfg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Graph Convolutional Neural Network Assisted Genetic Algorithm for PDN Decap Optimization</title><source>IEEE Xplore All Conference Series</source><creator>Manoharan, Haran ; Juang, Jack ; Zhang, Ling ; Wang, Hanfeng ; Pan, Jingnan ; Qiu, Kelvin ; Gao, Xu ; Hwang, Chulsoon</creator><creatorcontrib>Manoharan, Haran ; Juang, Jack ; Zhang, Ling ; Wang, Hanfeng ; Pan, Jingnan ; Qiu, Kelvin ; Gao, Xu ; Hwang, Chulsoon</creatorcontrib><description>This paper proposes a hybrid algorithm combining reinforcement learning (RL) and a genetic algorithm (GA) for PDN decap optimization. The trained RL agent uses a graph convolutional neural network as a policy network and predicts the decap solution for a given PDN impedance and target impedance, which is seeded as an initial population to the GA. The trained RL agent is scalable regarding the number of decap ports. The main goal is to save computation time and find the near global minimum or global minimum. Generalization of the algorithm to different decap libraries is achieved through transfer learning, eventually reducing the training time of the RL agent. The proposed algorithm finds a decap solution satisfying target impedance twice as fast compared with genetic algorithms.</description><identifier>EISSN: 2158-1118</identifier><identifier>EISBN: 9798350360394</identifier><identifier>DOI: 10.1109/EMCSIPI49824.2024.10705608</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convolutional neural networks ; decap optimization ; genetic algorithm ; Genetic algorithms ; graph convolutional neural network ; Graph neural networks ; Impedance ; Libraries ; Optimization ; Prediction algorithms ; Reinforcement learning ; Training ; Transfer learning</subject><ispartof>2024 IEEE International Symposium on Electromagnetic Compatibility, Signal & Power Integrity (EMC+SIPI), 2024, p.146-150</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10705608$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10705608$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Manoharan, Haran</creatorcontrib><creatorcontrib>Juang, Jack</creatorcontrib><creatorcontrib>Zhang, Ling</creatorcontrib><creatorcontrib>Wang, Hanfeng</creatorcontrib><creatorcontrib>Pan, Jingnan</creatorcontrib><creatorcontrib>Qiu, Kelvin</creatorcontrib><creatorcontrib>Gao, Xu</creatorcontrib><creatorcontrib>Hwang, Chulsoon</creatorcontrib><title>Graph Convolutional Neural Network Assisted Genetic Algorithm for PDN Decap Optimization</title><title>2024 IEEE International Symposium on Electromagnetic Compatibility, Signal & Power Integrity (EMC+SIPI)</title><addtitle>EMC+SIPI</addtitle><description>This paper proposes a hybrid algorithm combining reinforcement learning (RL) and a genetic algorithm (GA) for PDN decap optimization. The trained RL agent uses a graph convolutional neural network as a policy network and predicts the decap solution for a given PDN impedance and target impedance, which is seeded as an initial population to the GA. The trained RL agent is scalable regarding the number of decap ports. The main goal is to save computation time and find the near global minimum or global minimum. Generalization of the algorithm to different decap libraries is achieved through transfer learning, eventually reducing the training time of the RL agent. The proposed algorithm finds a decap solution satisfying target impedance twice as fast compared with genetic algorithms.</description><subject>Convolutional neural networks</subject><subject>decap optimization</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>graph convolutional neural network</subject><subject>Graph neural networks</subject><subject>Impedance</subject><subject>Libraries</subject><subject>Optimization</subject><subject>Prediction algorithms</subject><subject>Reinforcement learning</subject><subject>Training</subject><subject>Transfer learning</subject><issn>2158-1118</issn><isbn>9798350360394</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFjs1OwkAURkcTE4j2DVzcuAfu7bRlZknKjyxEEl24IxO4wGjbaWYGDTy9SHTt5juLLzk5QjwQ9olQDyZP5ct8Oc-0SrN-iuchHGJeoLoSiR5qJXOUBUqdXYtuSrnqEZHqiCSEd0Q8KwotqSveZt60eyhd8-mqQ7SuMRUs-OAviF_Of8AoBBsib2DGDUe7hlG1c97GfQ1b52E5XsCY16aF5zba2p7Mj-ZO3GxNFTj55a24n05ey8eeZeZV621t_HH1Fy3_ub8B3opGfg</recordid><startdate>20240805</startdate><enddate>20240805</enddate><creator>Manoharan, Haran</creator><creator>Juang, Jack</creator><creator>Zhang, Ling</creator><creator>Wang, Hanfeng</creator><creator>Pan, Jingnan</creator><creator>Qiu, Kelvin</creator><creator>Gao, Xu</creator><creator>Hwang, Chulsoon</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20240805</creationdate><title>Graph Convolutional Neural Network Assisted Genetic Algorithm for PDN Decap Optimization</title><author>Manoharan, Haran ; Juang, Jack ; Zhang, Ling ; Wang, Hanfeng ; Pan, Jingnan ; Qiu, Kelvin ; Gao, Xu ; Hwang, Chulsoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_107056083</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Convolutional neural networks</topic><topic>decap optimization</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>graph convolutional neural network</topic><topic>Graph neural networks</topic><topic>Impedance</topic><topic>Libraries</topic><topic>Optimization</topic><topic>Prediction algorithms</topic><topic>Reinforcement learning</topic><topic>Training</topic><topic>Transfer learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Manoharan, Haran</creatorcontrib><creatorcontrib>Juang, Jack</creatorcontrib><creatorcontrib>Zhang, Ling</creatorcontrib><creatorcontrib>Wang, Hanfeng</creatorcontrib><creatorcontrib>Pan, Jingnan</creatorcontrib><creatorcontrib>Qiu, Kelvin</creatorcontrib><creatorcontrib>Gao, Xu</creatorcontrib><creatorcontrib>Hwang, Chulsoon</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Manoharan, Haran</au><au>Juang, Jack</au><au>Zhang, Ling</au><au>Wang, Hanfeng</au><au>Pan, Jingnan</au><au>Qiu, Kelvin</au><au>Gao, Xu</au><au>Hwang, Chulsoon</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Graph Convolutional Neural Network Assisted Genetic Algorithm for PDN Decap Optimization</atitle><btitle>2024 IEEE International Symposium on Electromagnetic Compatibility, Signal & Power Integrity (EMC+SIPI)</btitle><stitle>EMC+SIPI</stitle><date>2024-08-05</date><risdate>2024</risdate><spage>146</spage><epage>150</epage><pages>146-150</pages><eissn>2158-1118</eissn><eisbn>9798350360394</eisbn><abstract>This paper proposes a hybrid algorithm combining reinforcement learning (RL) and a genetic algorithm (GA) for PDN decap optimization. The trained RL agent uses a graph convolutional neural network as a policy network and predicts the decap solution for a given PDN impedance and target impedance, which is seeded as an initial population to the GA. The trained RL agent is scalable regarding the number of decap ports. The main goal is to save computation time and find the near global minimum or global minimum. Generalization of the algorithm to different decap libraries is achieved through transfer learning, eventually reducing the training time of the RL agent. The proposed algorithm finds a decap solution satisfying target impedance twice as fast compared with genetic algorithms.</abstract><pub>IEEE</pub><doi>10.1109/EMCSIPI49824.2024.10705608</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2158-1118 |
ispartof | 2024 IEEE International Symposium on Electromagnetic Compatibility, Signal & Power Integrity (EMC+SIPI), 2024, p.146-150 |
issn | 2158-1118 |
language | eng |
recordid | cdi_ieee_primary_10705608 |
source | IEEE Xplore All Conference Series |
subjects | Convolutional neural networks decap optimization genetic algorithm Genetic algorithms graph convolutional neural network Graph neural networks Impedance Libraries Optimization Prediction algorithms Reinforcement learning Training Transfer learning |
title | Graph Convolutional Neural Network Assisted Genetic Algorithm for PDN Decap Optimization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A13%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Graph%20Convolutional%20Neural%20Network%20Assisted%20Genetic%20Algorithm%20for%20PDN%20Decap%20Optimization&rft.btitle=2024%20IEEE%20International%20Symposium%20on%20Electromagnetic%20Compatibility,%20Signal%20&%20Power%20Integrity%20(EMC+SIPI)&rft.au=Manoharan,%20Haran&rft.date=2024-08-05&rft.spage=146&rft.epage=150&rft.pages=146-150&rft.eissn=2158-1118&rft_id=info:doi/10.1109/EMCSIPI49824.2024.10705608&rft.eisbn=9798350360394&rft_dat=%3Cieee_CHZPO%3E10705608%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_107056083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10705608&rfr_iscdi=true |