Loading…

Graph Convolutional Neural Network Assisted Genetic Algorithm for PDN Decap Optimization

This paper proposes a hybrid algorithm combining reinforcement learning (RL) and a genetic algorithm (GA) for PDN decap optimization. The trained RL agent uses a graph convolutional neural network as a policy network and predicts the decap solution for a given PDN impedance and target impedance, whi...

Full description

Saved in:
Bibliographic Details
Main Authors: Manoharan, Haran, Juang, Jack, Zhang, Ling, Wang, Hanfeng, Pan, Jingnan, Qiu, Kelvin, Gao, Xu, Hwang, Chulsoon
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 150
container_issue
container_start_page 146
container_title
container_volume
creator Manoharan, Haran
Juang, Jack
Zhang, Ling
Wang, Hanfeng
Pan, Jingnan
Qiu, Kelvin
Gao, Xu
Hwang, Chulsoon
description This paper proposes a hybrid algorithm combining reinforcement learning (RL) and a genetic algorithm (GA) for PDN decap optimization. The trained RL agent uses a graph convolutional neural network as a policy network and predicts the decap solution for a given PDN impedance and target impedance, which is seeded as an initial population to the GA. The trained RL agent is scalable regarding the number of decap ports. The main goal is to save computation time and find the near global minimum or global minimum. Generalization of the algorithm to different decap libraries is achieved through transfer learning, eventually reducing the training time of the RL agent. The proposed algorithm finds a decap solution satisfying target impedance twice as fast compared with genetic algorithms.
doi_str_mv 10.1109/EMCSIPI49824.2024.10705608
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10705608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10705608</ieee_id><sourcerecordid>10705608</sourcerecordid><originalsourceid>FETCH-ieee_primary_107056083</originalsourceid><addsrcrecordid>eNqFjs1OwkAURkcTE4j2DVzcuAfu7bRlZknKjyxEEl24IxO4wGjbaWYGDTy9SHTt5juLLzk5QjwQ9olQDyZP5ct8Oc-0SrN-iuchHGJeoLoSiR5qJXOUBUqdXYtuSrnqEZHqiCSEd0Q8KwotqSveZt60eyhd8-mqQ7SuMRUs-OAviF_Of8AoBBsib2DGDUe7hlG1c97GfQ1b52E5XsCY16aF5zba2p7Mj-ZO3GxNFTj55a24n05ey8eeZeZV621t_HH1Fy3_ub8B3opGfg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Graph Convolutional Neural Network Assisted Genetic Algorithm for PDN Decap Optimization</title><source>IEEE Xplore All Conference Series</source><creator>Manoharan, Haran ; Juang, Jack ; Zhang, Ling ; Wang, Hanfeng ; Pan, Jingnan ; Qiu, Kelvin ; Gao, Xu ; Hwang, Chulsoon</creator><creatorcontrib>Manoharan, Haran ; Juang, Jack ; Zhang, Ling ; Wang, Hanfeng ; Pan, Jingnan ; Qiu, Kelvin ; Gao, Xu ; Hwang, Chulsoon</creatorcontrib><description>This paper proposes a hybrid algorithm combining reinforcement learning (RL) and a genetic algorithm (GA) for PDN decap optimization. The trained RL agent uses a graph convolutional neural network as a policy network and predicts the decap solution for a given PDN impedance and target impedance, which is seeded as an initial population to the GA. The trained RL agent is scalable regarding the number of decap ports. The main goal is to save computation time and find the near global minimum or global minimum. Generalization of the algorithm to different decap libraries is achieved through transfer learning, eventually reducing the training time of the RL agent. The proposed algorithm finds a decap solution satisfying target impedance twice as fast compared with genetic algorithms.</description><identifier>EISSN: 2158-1118</identifier><identifier>EISBN: 9798350360394</identifier><identifier>DOI: 10.1109/EMCSIPI49824.2024.10705608</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convolutional neural networks ; decap optimization ; genetic algorithm ; Genetic algorithms ; graph convolutional neural network ; Graph neural networks ; Impedance ; Libraries ; Optimization ; Prediction algorithms ; Reinforcement learning ; Training ; Transfer learning</subject><ispartof>2024 IEEE International Symposium on Electromagnetic Compatibility, Signal &amp; Power Integrity (EMC+SIPI), 2024, p.146-150</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10705608$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10705608$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Manoharan, Haran</creatorcontrib><creatorcontrib>Juang, Jack</creatorcontrib><creatorcontrib>Zhang, Ling</creatorcontrib><creatorcontrib>Wang, Hanfeng</creatorcontrib><creatorcontrib>Pan, Jingnan</creatorcontrib><creatorcontrib>Qiu, Kelvin</creatorcontrib><creatorcontrib>Gao, Xu</creatorcontrib><creatorcontrib>Hwang, Chulsoon</creatorcontrib><title>Graph Convolutional Neural Network Assisted Genetic Algorithm for PDN Decap Optimization</title><title>2024 IEEE International Symposium on Electromagnetic Compatibility, Signal &amp; Power Integrity (EMC+SIPI)</title><addtitle>EMC+SIPI</addtitle><description>This paper proposes a hybrid algorithm combining reinforcement learning (RL) and a genetic algorithm (GA) for PDN decap optimization. The trained RL agent uses a graph convolutional neural network as a policy network and predicts the decap solution for a given PDN impedance and target impedance, which is seeded as an initial population to the GA. The trained RL agent is scalable regarding the number of decap ports. The main goal is to save computation time and find the near global minimum or global minimum. Generalization of the algorithm to different decap libraries is achieved through transfer learning, eventually reducing the training time of the RL agent. The proposed algorithm finds a decap solution satisfying target impedance twice as fast compared with genetic algorithms.</description><subject>Convolutional neural networks</subject><subject>decap optimization</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>graph convolutional neural network</subject><subject>Graph neural networks</subject><subject>Impedance</subject><subject>Libraries</subject><subject>Optimization</subject><subject>Prediction algorithms</subject><subject>Reinforcement learning</subject><subject>Training</subject><subject>Transfer learning</subject><issn>2158-1118</issn><isbn>9798350360394</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFjs1OwkAURkcTE4j2DVzcuAfu7bRlZknKjyxEEl24IxO4wGjbaWYGDTy9SHTt5juLLzk5QjwQ9olQDyZP5ct8Oc-0SrN-iuchHGJeoLoSiR5qJXOUBUqdXYtuSrnqEZHqiCSEd0Q8KwotqSveZt60eyhd8-mqQ7SuMRUs-OAviF_Of8AoBBsib2DGDUe7hlG1c97GfQ1b52E5XsCY16aF5zba2p7Mj-ZO3GxNFTj55a24n05ey8eeZeZV621t_HH1Fy3_ub8B3opGfg</recordid><startdate>20240805</startdate><enddate>20240805</enddate><creator>Manoharan, Haran</creator><creator>Juang, Jack</creator><creator>Zhang, Ling</creator><creator>Wang, Hanfeng</creator><creator>Pan, Jingnan</creator><creator>Qiu, Kelvin</creator><creator>Gao, Xu</creator><creator>Hwang, Chulsoon</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20240805</creationdate><title>Graph Convolutional Neural Network Assisted Genetic Algorithm for PDN Decap Optimization</title><author>Manoharan, Haran ; Juang, Jack ; Zhang, Ling ; Wang, Hanfeng ; Pan, Jingnan ; Qiu, Kelvin ; Gao, Xu ; Hwang, Chulsoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_107056083</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Convolutional neural networks</topic><topic>decap optimization</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>graph convolutional neural network</topic><topic>Graph neural networks</topic><topic>Impedance</topic><topic>Libraries</topic><topic>Optimization</topic><topic>Prediction algorithms</topic><topic>Reinforcement learning</topic><topic>Training</topic><topic>Transfer learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Manoharan, Haran</creatorcontrib><creatorcontrib>Juang, Jack</creatorcontrib><creatorcontrib>Zhang, Ling</creatorcontrib><creatorcontrib>Wang, Hanfeng</creatorcontrib><creatorcontrib>Pan, Jingnan</creatorcontrib><creatorcontrib>Qiu, Kelvin</creatorcontrib><creatorcontrib>Gao, Xu</creatorcontrib><creatorcontrib>Hwang, Chulsoon</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Manoharan, Haran</au><au>Juang, Jack</au><au>Zhang, Ling</au><au>Wang, Hanfeng</au><au>Pan, Jingnan</au><au>Qiu, Kelvin</au><au>Gao, Xu</au><au>Hwang, Chulsoon</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Graph Convolutional Neural Network Assisted Genetic Algorithm for PDN Decap Optimization</atitle><btitle>2024 IEEE International Symposium on Electromagnetic Compatibility, Signal &amp; Power Integrity (EMC+SIPI)</btitle><stitle>EMC+SIPI</stitle><date>2024-08-05</date><risdate>2024</risdate><spage>146</spage><epage>150</epage><pages>146-150</pages><eissn>2158-1118</eissn><eisbn>9798350360394</eisbn><abstract>This paper proposes a hybrid algorithm combining reinforcement learning (RL) and a genetic algorithm (GA) for PDN decap optimization. The trained RL agent uses a graph convolutional neural network as a policy network and predicts the decap solution for a given PDN impedance and target impedance, which is seeded as an initial population to the GA. The trained RL agent is scalable regarding the number of decap ports. The main goal is to save computation time and find the near global minimum or global minimum. Generalization of the algorithm to different decap libraries is achieved through transfer learning, eventually reducing the training time of the RL agent. The proposed algorithm finds a decap solution satisfying target impedance twice as fast compared with genetic algorithms.</abstract><pub>IEEE</pub><doi>10.1109/EMCSIPI49824.2024.10705608</doi></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2158-1118
ispartof 2024 IEEE International Symposium on Electromagnetic Compatibility, Signal & Power Integrity (EMC+SIPI), 2024, p.146-150
issn 2158-1118
language eng
recordid cdi_ieee_primary_10705608
source IEEE Xplore All Conference Series
subjects Convolutional neural networks
decap optimization
genetic algorithm
Genetic algorithms
graph convolutional neural network
Graph neural networks
Impedance
Libraries
Optimization
Prediction algorithms
Reinforcement learning
Training
Transfer learning
title Graph Convolutional Neural Network Assisted Genetic Algorithm for PDN Decap Optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A13%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Graph%20Convolutional%20Neural%20Network%20Assisted%20Genetic%20Algorithm%20for%20PDN%20Decap%20Optimization&rft.btitle=2024%20IEEE%20International%20Symposium%20on%20Electromagnetic%20Compatibility,%20Signal%20&%20Power%20Integrity%20(EMC+SIPI)&rft.au=Manoharan,%20Haran&rft.date=2024-08-05&rft.spage=146&rft.epage=150&rft.pages=146-150&rft.eissn=2158-1118&rft_id=info:doi/10.1109/EMCSIPI49824.2024.10705608&rft.eisbn=9798350360394&rft_dat=%3Cieee_CHZPO%3E10705608%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_107056083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10705608&rfr_iscdi=true