Loading…

LSFM: Light Style and Feature Matching for Efficient Cross-Domain Palmprint Recognition

The exceptional feature extraction capabilities of deep neural networks (DNNs) have significantly advanced palmprint recognition. However, DNNs typically require training and testing data originate from the same distribution, which limits their practical applications. Moreover, existing unsupervised...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information forensics and security 2024, Vol.19, p.9598-9612
Main Authors: Ruan, Song, Li, Yantao, Qin, Huafeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c148t-bbd3442122de04d28a058472f38b50de7b2c51f0338592f787705109360fe0793
container_end_page 9612
container_issue
container_start_page 9598
container_title IEEE transactions on information forensics and security
container_volume 19
creator Ruan, Song
Li, Yantao
Qin, Huafeng
description The exceptional feature extraction capabilities of deep neural networks (DNNs) have significantly advanced palmprint recognition. However, DNNs typically require training and testing data originate from the same distribution, which limits their practical applications. Moreover, existing unsupervised domain adaptation methods struggle to achieve high accuracy with efficiency. To address these challenges, we propose LSFM, an efficient Light Style and Feature Matching method that enhances palmprint recognition performance in cross-domain scenarios with fewer resources. Specifically, we develop an efficient style transfer model to mitigate domain shifts at the pixel level. We then align features across multiple task-specific layers in high dimensional space to reduce domain discrepancies, further improving cross-domain performance. Finally, we evaluate the effectiveness of the proposed LSFM through extensive experiments on two public multi-domain palmprint databases. The experimental results demonstrate that LSFM achieves superior performance with significantly reduced resource consumption, improving average accuracy to 94.87% and lowering the average equal error rate to 1.46%, while saving over 80% of resources.
doi_str_mv 10.1109/TIFS.2024.3476978
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10711952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10711952</ieee_id><sourcerecordid>10_1109_TIFS_2024_3476978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-bbd3442122de04d28a058472f38b50de7b2c51f0338592f787705109360fe0793</originalsourceid><addsrcrecordid>eNpNkN1Kw0AQhRdRsFYfQPBiXyB1Zn-yG--kNlpIUWzFy7BJdtuVNJFkvejbm9AiXs0wzDmc8xFyizBDhOR-s0zXMwZMzLhQcaL0GZmglHEUA8Pzvx35Jbnq-y8AITDWE_KZrdPVA838dhfoOhxqS01T0dSa8NNZujKh3PlmS13b0YVzvvS2CXTetX0fPbV74xv6Zur9d-eH87st223jg2-ba3LhTN3bm9Ocko90sZm_RNnr83L-mEUlCh2ioqi4EAwZqyyIimkDUgvFHNeFhMqqgpUSHXCuZcKc0kqBHPryGJwFlfApwaNvOUbqrMuHKHvTHXKEfCSTj2TykUx-IjNo7o4ab639968QE8n4Lw-OXlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>LSFM: Light Style and Feature Matching for Efficient Cross-Domain Palmprint Recognition</title><source>IEEE Xplore (Online service)</source><creator>Ruan, Song ; Li, Yantao ; Qin, Huafeng</creator><creatorcontrib>Ruan, Song ; Li, Yantao ; Qin, Huafeng</creatorcontrib><description>The exceptional feature extraction capabilities of deep neural networks (DNNs) have significantly advanced palmprint recognition. However, DNNs typically require training and testing data originate from the same distribution, which limits their practical applications. Moreover, existing unsupervised domain adaptation methods struggle to achieve high accuracy with efficiency. To address these challenges, we propose LSFM, an efficient Light Style and Feature Matching method that enhances palmprint recognition performance in cross-domain scenarios with fewer resources. Specifically, we develop an efficient style transfer model to mitigate domain shifts at the pixel level. We then align features across multiple task-specific layers in high dimensional space to reduce domain discrepancies, further improving cross-domain performance. Finally, we evaluate the effectiveness of the proposed LSFM through extensive experiments on two public multi-domain palmprint databases. The experimental results demonstrate that LSFM achieves superior performance with significantly reduced resource consumption, improving average accuracy to 94.87% and lowering the average equal error rate to 1.46%, while saving over 80% of resources.</description><identifier>ISSN: 1556-6013</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2024.3476978</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Adversarial machine learning ; Convolutional neural networks ; Deep learning ; Feature extraction ; feature matching ; Generators ; light style ; Limiting ; Palmprint recognition ; Three-dimensional displays ; Training ; unsupervised domain adaptation</subject><ispartof>IEEE transactions on information forensics and security, 2024, Vol.19, p.9598-9612</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-bbd3442122de04d28a058472f38b50de7b2c51f0338592f787705109360fe0793</cites><orcidid>0000-0003-4911-0393 ; 0000-0001-7648-5671 ; 0000-0003-4195-7178</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10711952$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,4009,27902,27903,27904,54775</link.rule.ids></links><search><creatorcontrib>Ruan, Song</creatorcontrib><creatorcontrib>Li, Yantao</creatorcontrib><creatorcontrib>Qin, Huafeng</creatorcontrib><title>LSFM: Light Style and Feature Matching for Efficient Cross-Domain Palmprint Recognition</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>The exceptional feature extraction capabilities of deep neural networks (DNNs) have significantly advanced palmprint recognition. However, DNNs typically require training and testing data originate from the same distribution, which limits their practical applications. Moreover, existing unsupervised domain adaptation methods struggle to achieve high accuracy with efficiency. To address these challenges, we propose LSFM, an efficient Light Style and Feature Matching method that enhances palmprint recognition performance in cross-domain scenarios with fewer resources. Specifically, we develop an efficient style transfer model to mitigate domain shifts at the pixel level. We then align features across multiple task-specific layers in high dimensional space to reduce domain discrepancies, further improving cross-domain performance. Finally, we evaluate the effectiveness of the proposed LSFM through extensive experiments on two public multi-domain palmprint databases. The experimental results demonstrate that LSFM achieves superior performance with significantly reduced resource consumption, improving average accuracy to 94.87% and lowering the average equal error rate to 1.46%, while saving over 80% of resources.</description><subject>Adaptation models</subject><subject>Adversarial machine learning</subject><subject>Convolutional neural networks</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>feature matching</subject><subject>Generators</subject><subject>light style</subject><subject>Limiting</subject><subject>Palmprint recognition</subject><subject>Three-dimensional displays</subject><subject>Training</subject><subject>unsupervised domain adaptation</subject><issn>1556-6013</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkN1Kw0AQhRdRsFYfQPBiXyB1Zn-yG--kNlpIUWzFy7BJdtuVNJFkvejbm9AiXs0wzDmc8xFyizBDhOR-s0zXMwZMzLhQcaL0GZmglHEUA8Pzvx35Jbnq-y8AITDWE_KZrdPVA838dhfoOhxqS01T0dSa8NNZujKh3PlmS13b0YVzvvS2CXTetX0fPbV74xv6Zur9d-eH87st223jg2-ba3LhTN3bm9Ocko90sZm_RNnr83L-mEUlCh2ioqi4EAwZqyyIimkDUgvFHNeFhMqqgpUSHXCuZcKc0kqBHPryGJwFlfApwaNvOUbqrMuHKHvTHXKEfCSTj2TykUx-IjNo7o4ab639968QE8n4Lw-OXlQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Ruan, Song</creator><creator>Li, Yantao</creator><creator>Qin, Huafeng</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4911-0393</orcidid><orcidid>https://orcid.org/0000-0001-7648-5671</orcidid><orcidid>https://orcid.org/0000-0003-4195-7178</orcidid></search><sort><creationdate>2024</creationdate><title>LSFM: Light Style and Feature Matching for Efficient Cross-Domain Palmprint Recognition</title><author>Ruan, Song ; Li, Yantao ; Qin, Huafeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-bbd3442122de04d28a058472f38b50de7b2c51f0338592f787705109360fe0793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Adversarial machine learning</topic><topic>Convolutional neural networks</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>feature matching</topic><topic>Generators</topic><topic>light style</topic><topic>Limiting</topic><topic>Palmprint recognition</topic><topic>Three-dimensional displays</topic><topic>Training</topic><topic>unsupervised domain adaptation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruan, Song</creatorcontrib><creatorcontrib>Li, Yantao</creatorcontrib><creatorcontrib>Qin, Huafeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruan, Song</au><au>Li, Yantao</au><au>Qin, Huafeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LSFM: Light Style and Feature Matching for Efficient Cross-Domain Palmprint Recognition</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2024</date><risdate>2024</risdate><volume>19</volume><spage>9598</spage><epage>9612</epage><pages>9598-9612</pages><issn>1556-6013</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>The exceptional feature extraction capabilities of deep neural networks (DNNs) have significantly advanced palmprint recognition. However, DNNs typically require training and testing data originate from the same distribution, which limits their practical applications. Moreover, existing unsupervised domain adaptation methods struggle to achieve high accuracy with efficiency. To address these challenges, we propose LSFM, an efficient Light Style and Feature Matching method that enhances palmprint recognition performance in cross-domain scenarios with fewer resources. Specifically, we develop an efficient style transfer model to mitigate domain shifts at the pixel level. We then align features across multiple task-specific layers in high dimensional space to reduce domain discrepancies, further improving cross-domain performance. Finally, we evaluate the effectiveness of the proposed LSFM through extensive experiments on two public multi-domain palmprint databases. The experimental results demonstrate that LSFM achieves superior performance with significantly reduced resource consumption, improving average accuracy to 94.87% and lowering the average equal error rate to 1.46%, while saving over 80% of resources.</abstract><pub>IEEE</pub><doi>10.1109/TIFS.2024.3476978</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4911-0393</orcidid><orcidid>https://orcid.org/0000-0001-7648-5671</orcidid><orcidid>https://orcid.org/0000-0003-4195-7178</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1556-6013
ispartof IEEE transactions on information forensics and security, 2024, Vol.19, p.9598-9612
issn 1556-6013
1556-6021
language eng
recordid cdi_ieee_primary_10711952
source IEEE Xplore (Online service)
subjects Adaptation models
Adversarial machine learning
Convolutional neural networks
Deep learning
Feature extraction
feature matching
Generators
light style
Limiting
Palmprint recognition
Three-dimensional displays
Training
unsupervised domain adaptation
title LSFM: Light Style and Feature Matching for Efficient Cross-Domain Palmprint Recognition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A05%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LSFM:%20Light%20Style%20and%20Feature%20Matching%20for%20Efficient%20Cross-Domain%20Palmprint%20Recognition&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Ruan,%20Song&rft.date=2024&rft.volume=19&rft.spage=9598&rft.epage=9612&rft.pages=9598-9612&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2024.3476978&rft_dat=%3Ccrossref_ieee_%3E10_1109_TIFS_2024_3476978%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c148t-bbd3442122de04d28a058472f38b50de7b2c51f0338592f787705109360fe0793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10711952&rfr_iscdi=true