Loading…
sEMG and NCLA-Based Gesture Recognition for Sewer Inspection Robot
In the domain of human-computer interaction (HCI), the recognition of emergency gestures based on surface electromyography (sEMG) signals is critical for minimizing the risk of inaccurate control in sewer inspection robots. This study is dedicated to establish a mapping relationship between forearm...
Saved in:
Published in: | IEEE sensors journal 2024-01, Vol.24 (23), p.39373-39382 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 39382 |
container_issue | 23 |
container_start_page | 39373 |
container_title | IEEE sensors journal |
container_volume | 24 |
creator | Yin, Shiyi Lu, Bolin Li, Chuanjiang Gu, Ya |
description | In the domain of human-computer interaction (HCI), the recognition of emergency gestures based on surface electromyography (sEMG) signals is critical for minimizing the risk of inaccurate control in sewer inspection robots. This study is dedicated to establish a mapping relationship between forearm multichannel sEMG signals and emergency gestures, leading to the creation of the rainwater and sewage management gesture dataset (RSMGD) alongside a corresponding gesture recognition methodology. A comprehensive evaluation encompassing classification accuracy, CPU running time, and required feature dimensionality is conducted for this gesture recognition. Initially, RSMGD is collected utilizing Noraxon equipment, and an effective wavelet transform technique is applied to extract 2-D feature maps from the signals. To overcome the limitations of most traditional feature selection algorithms, which rely on a single fitness evaluation and involve high-dimensional features, this study introduces a novel feature optimization algorithm-the Nifty crow learning algorithm (NCLA). Inspired by the Lévy flight random walk model, originally used to simulate the stochastic movement and long-distance migratory behaviors of birds, the algorithm incorporates an innovative mutation strategy through crow following behavior and a memory updating mechanism, combined with a multitiered fitness evaluation mechanism, achieving more optimal feature selection. The results indicate that NCLA, using only 16 features ( {p} \; \lt 0.05 ), achieves a classification accuracy of 99.04% in just 0.201 s ( {p} \; \lt 0.05 ), with the true positive rate (TPR) and false positive rate (FPR) reaching 99.09% and 1.81%, respectively, demonstrating its exceptional performance in rapid and accurate gesture recognition. |
doi_str_mv | 10.1109/JSEN.2024.3476071 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10716420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10716420</ieee_id><sourcerecordid>3133497775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c915-217e27d809aca4de3eb2c1020494311c221525de4cde77641acd4558096871fe3</originalsourceid><addsrcrecordid>eNpNkEFPAjEQhRujiYj-ABMPm3he7LTdne0RCCIGMQEO3prSnTVLdIstxPjv3RUOnmYyeW_mzcfYLfABANcPz6vJYiC4UAOpMOcIZ6wHWVakgKo473rJUyXx7ZJdxbjlHDRm2GOjOHmZJrYpk8V4PkxHNlKZTCnuD4GSJTn_3tT72jdJ5UOyom8KyayJO3J_w6Xf-P01u6jsR6SbU-2z9eNkPX5K56_T2Xg4T52GLBWAJLAsuLbOqpIkbYQDLrjSSgI4ISATWUnKlYSYK7CuVO0DXOcFQkWyz-6Pa3fBfx3ahGbrD6FpLxoJUiqNiFmrgqPKBR9joMrsQv1pw48BbjpSpiNlOlLmRKr13B09NRH90yPkSnD5C8HfYj4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133497775</pqid></control><display><type>article</type><title>sEMG and NCLA-Based Gesture Recognition for Sewer Inspection Robot</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yin, Shiyi ; Lu, Bolin ; Li, Chuanjiang ; Gu, Ya</creator><creatorcontrib>Yin, Shiyi ; Lu, Bolin ; Li, Chuanjiang ; Gu, Ya</creatorcontrib><description><![CDATA[In the domain of human-computer interaction (HCI), the recognition of emergency gestures based on surface electromyography (sEMG) signals is critical for minimizing the risk of inaccurate control in sewer inspection robots. This study is dedicated to establish a mapping relationship between forearm multichannel sEMG signals and emergency gestures, leading to the creation of the rainwater and sewage management gesture dataset (RSMGD) alongside a corresponding gesture recognition methodology. A comprehensive evaluation encompassing classification accuracy, CPU running time, and required feature dimensionality is conducted for this gesture recognition. Initially, RSMGD is collected utilizing Noraxon equipment, and an effective wavelet transform technique is applied to extract 2-D feature maps from the signals. To overcome the limitations of most traditional feature selection algorithms, which rely on a single fitness evaluation and involve high-dimensional features, this study introduces a novel feature optimization algorithm-the Nifty crow learning algorithm (NCLA). Inspired by the Lévy flight random walk model, originally used to simulate the stochastic movement and long-distance migratory behaviors of birds, the algorithm incorporates an innovative mutation strategy through crow following behavior and a memory updating mechanism, combined with a multitiered fitness evaluation mechanism, achieving more optimal feature selection. The results indicate that NCLA, using only 16 features (<inline-formula> <tex-math notation="LaTeX">{p} \; \lt 0.05 </tex-math></inline-formula>), achieves a classification accuracy of 99.04% in just 0.201 s (<inline-formula> <tex-math notation="LaTeX">{p} \; \lt 0.05 </tex-math></inline-formula>), with the true positive rate (TPR) and false positive rate (FPR) reaching 99.09% and 1.81%, respectively, demonstrating its exceptional performance in rapid and accurate gesture recognition.]]></description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3476071</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Algorithms ; Classification ; Classification algorithms ; Continuous wavelet transforms ; Control equipment ; Electrodes ; Electromyography ; Emergency equipment ; Emergency management ; Feature extraction ; Feature maps ; Feature selection ; Gesture recognition ; Human-computer interface ; Inspection ; Machine learning ; Nearest neighbor methods ; Nifty crow learning algorithm (NCLA) ; Rain water ; rainwater and sewage management gesture dataset (RSMGD) ; Random walk ; Real-time systems ; Robot control ; surface electromyography (sEMG) ; Time-frequency analysis ; Wavelet transforms</subject><ispartof>IEEE sensors journal, 2024-01, Vol.24 (23), p.39373-39382</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8552-9349 ; 0000-0003-2337-5043 ; 0000-0002-0167-3341 ; 0009-0001-4070-3777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10716420$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Yin, Shiyi</creatorcontrib><creatorcontrib>Lu, Bolin</creatorcontrib><creatorcontrib>Li, Chuanjiang</creatorcontrib><creatorcontrib>Gu, Ya</creatorcontrib><title>sEMG and NCLA-Based Gesture Recognition for Sewer Inspection Robot</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description><![CDATA[In the domain of human-computer interaction (HCI), the recognition of emergency gestures based on surface electromyography (sEMG) signals is critical for minimizing the risk of inaccurate control in sewer inspection robots. This study is dedicated to establish a mapping relationship between forearm multichannel sEMG signals and emergency gestures, leading to the creation of the rainwater and sewage management gesture dataset (RSMGD) alongside a corresponding gesture recognition methodology. A comprehensive evaluation encompassing classification accuracy, CPU running time, and required feature dimensionality is conducted for this gesture recognition. Initially, RSMGD is collected utilizing Noraxon equipment, and an effective wavelet transform technique is applied to extract 2-D feature maps from the signals. To overcome the limitations of most traditional feature selection algorithms, which rely on a single fitness evaluation and involve high-dimensional features, this study introduces a novel feature optimization algorithm-the Nifty crow learning algorithm (NCLA). Inspired by the Lévy flight random walk model, originally used to simulate the stochastic movement and long-distance migratory behaviors of birds, the algorithm incorporates an innovative mutation strategy through crow following behavior and a memory updating mechanism, combined with a multitiered fitness evaluation mechanism, achieving more optimal feature selection. The results indicate that NCLA, using only 16 features (<inline-formula> <tex-math notation="LaTeX">{p} \; \lt 0.05 </tex-math></inline-formula>), achieves a classification accuracy of 99.04% in just 0.201 s (<inline-formula> <tex-math notation="LaTeX">{p} \; \lt 0.05 </tex-math></inline-formula>), with the true positive rate (TPR) and false positive rate (FPR) reaching 99.09% and 1.81%, respectively, demonstrating its exceptional performance in rapid and accurate gesture recognition.]]></description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Classification algorithms</subject><subject>Continuous wavelet transforms</subject><subject>Control equipment</subject><subject>Electrodes</subject><subject>Electromyography</subject><subject>Emergency equipment</subject><subject>Emergency management</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Feature selection</subject><subject>Gesture recognition</subject><subject>Human-computer interface</subject><subject>Inspection</subject><subject>Machine learning</subject><subject>Nearest neighbor methods</subject><subject>Nifty crow learning algorithm (NCLA)</subject><subject>Rain water</subject><subject>rainwater and sewage management gesture dataset (RSMGD)</subject><subject>Random walk</subject><subject>Real-time systems</subject><subject>Robot control</subject><subject>surface electromyography (sEMG)</subject><subject>Time-frequency analysis</subject><subject>Wavelet transforms</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkEFPAjEQhRujiYj-ABMPm3he7LTdne0RCCIGMQEO3prSnTVLdIstxPjv3RUOnmYyeW_mzcfYLfABANcPz6vJYiC4UAOpMOcIZ6wHWVakgKo473rJUyXx7ZJdxbjlHDRm2GOjOHmZJrYpk8V4PkxHNlKZTCnuD4GSJTn_3tT72jdJ5UOyom8KyayJO3J_w6Xf-P01u6jsR6SbU-2z9eNkPX5K56_T2Xg4T52GLBWAJLAsuLbOqpIkbYQDLrjSSgI4ISATWUnKlYSYK7CuVO0DXOcFQkWyz-6Pa3fBfx3ahGbrD6FpLxoJUiqNiFmrgqPKBR9joMrsQv1pw48BbjpSpiNlOlLmRKr13B09NRH90yPkSnD5C8HfYj4</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Yin, Shiyi</creator><creator>Lu, Bolin</creator><creator>Li, Chuanjiang</creator><creator>Gu, Ya</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8552-9349</orcidid><orcidid>https://orcid.org/0000-0003-2337-5043</orcidid><orcidid>https://orcid.org/0000-0002-0167-3341</orcidid><orcidid>https://orcid.org/0009-0001-4070-3777</orcidid></search><sort><creationdate>20240101</creationdate><title>sEMG and NCLA-Based Gesture Recognition for Sewer Inspection Robot</title><author>Yin, Shiyi ; Lu, Bolin ; Li, Chuanjiang ; Gu, Ya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c915-217e27d809aca4de3eb2c1020494311c221525de4cde77641acd4558096871fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Classification algorithms</topic><topic>Continuous wavelet transforms</topic><topic>Control equipment</topic><topic>Electrodes</topic><topic>Electromyography</topic><topic>Emergency equipment</topic><topic>Emergency management</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Feature selection</topic><topic>Gesture recognition</topic><topic>Human-computer interface</topic><topic>Inspection</topic><topic>Machine learning</topic><topic>Nearest neighbor methods</topic><topic>Nifty crow learning algorithm (NCLA)</topic><topic>Rain water</topic><topic>rainwater and sewage management gesture dataset (RSMGD)</topic><topic>Random walk</topic><topic>Real-time systems</topic><topic>Robot control</topic><topic>surface electromyography (sEMG)</topic><topic>Time-frequency analysis</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Shiyi</creatorcontrib><creatorcontrib>Lu, Bolin</creatorcontrib><creatorcontrib>Li, Chuanjiang</creatorcontrib><creatorcontrib>Gu, Ya</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Shiyi</au><au>Lu, Bolin</au><au>Li, Chuanjiang</au><au>Gu, Ya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>sEMG and NCLA-Based Gesture Recognition for Sewer Inspection Robot</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>24</volume><issue>23</issue><spage>39373</spage><epage>39382</epage><pages>39373-39382</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract><![CDATA[In the domain of human-computer interaction (HCI), the recognition of emergency gestures based on surface electromyography (sEMG) signals is critical for minimizing the risk of inaccurate control in sewer inspection robots. This study is dedicated to establish a mapping relationship between forearm multichannel sEMG signals and emergency gestures, leading to the creation of the rainwater and sewage management gesture dataset (RSMGD) alongside a corresponding gesture recognition methodology. A comprehensive evaluation encompassing classification accuracy, CPU running time, and required feature dimensionality is conducted for this gesture recognition. Initially, RSMGD is collected utilizing Noraxon equipment, and an effective wavelet transform technique is applied to extract 2-D feature maps from the signals. To overcome the limitations of most traditional feature selection algorithms, which rely on a single fitness evaluation and involve high-dimensional features, this study introduces a novel feature optimization algorithm-the Nifty crow learning algorithm (NCLA). Inspired by the Lévy flight random walk model, originally used to simulate the stochastic movement and long-distance migratory behaviors of birds, the algorithm incorporates an innovative mutation strategy through crow following behavior and a memory updating mechanism, combined with a multitiered fitness evaluation mechanism, achieving more optimal feature selection. The results indicate that NCLA, using only 16 features (<inline-formula> <tex-math notation="LaTeX">{p} \; \lt 0.05 </tex-math></inline-formula>), achieves a classification accuracy of 99.04% in just 0.201 s (<inline-formula> <tex-math notation="LaTeX">{p} \; \lt 0.05 </tex-math></inline-formula>), with the true positive rate (TPR) and false positive rate (FPR) reaching 99.09% and 1.81%, respectively, demonstrating its exceptional performance in rapid and accurate gesture recognition.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3476071</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8552-9349</orcidid><orcidid>https://orcid.org/0000-0003-2337-5043</orcidid><orcidid>https://orcid.org/0000-0002-0167-3341</orcidid><orcidid>https://orcid.org/0009-0001-4070-3777</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2024-01, Vol.24 (23), p.39373-39382 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_10716420 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Accuracy Algorithms Classification Classification algorithms Continuous wavelet transforms Control equipment Electrodes Electromyography Emergency equipment Emergency management Feature extraction Feature maps Feature selection Gesture recognition Human-computer interface Inspection Machine learning Nearest neighbor methods Nifty crow learning algorithm (NCLA) Rain water rainwater and sewage management gesture dataset (RSMGD) Random walk Real-time systems Robot control surface electromyography (sEMG) Time-frequency analysis Wavelet transforms |
title | sEMG and NCLA-Based Gesture Recognition for Sewer Inspection Robot |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A40%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=sEMG%20and%20NCLA-Based%20Gesture%20Recognition%20for%20Sewer%20Inspection%20Robot&rft.jtitle=IEEE%20sensors%20journal&rft.au=Yin,%20Shiyi&rft.date=2024-01-01&rft.volume=24&rft.issue=23&rft.spage=39373&rft.epage=39382&rft.pages=39373-39382&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3476071&rft_dat=%3Cproquest_ieee_%3E3133497775%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c915-217e27d809aca4de3eb2c1020494311c221525de4cde77641acd4558096871fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3133497775&rft_id=info:pmid/&rft_ieee_id=10716420&rfr_iscdi=true |