Loading…

sEMG and NCLA-Based Gesture Recognition for Sewer Inspection Robot

In the domain of human-computer interaction (HCI), the recognition of emergency gestures based on surface electromyography (sEMG) signals is critical for minimizing the risk of inaccurate control in sewer inspection robots. This study is dedicated to establish a mapping relationship between forearm...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2024-01, Vol.24 (23), p.39373-39382
Main Authors: Yin, Shiyi, Lu, Bolin, Li, Chuanjiang, Gu, Ya
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 39382
container_issue 23
container_start_page 39373
container_title IEEE sensors journal
container_volume 24
creator Yin, Shiyi
Lu, Bolin
Li, Chuanjiang
Gu, Ya
description In the domain of human-computer interaction (HCI), the recognition of emergency gestures based on surface electromyography (sEMG) signals is critical for minimizing the risk of inaccurate control in sewer inspection robots. This study is dedicated to establish a mapping relationship between forearm multichannel sEMG signals and emergency gestures, leading to the creation of the rainwater and sewage management gesture dataset (RSMGD) alongside a corresponding gesture recognition methodology. A comprehensive evaluation encompassing classification accuracy, CPU running time, and required feature dimensionality is conducted for this gesture recognition. Initially, RSMGD is collected utilizing Noraxon equipment, and an effective wavelet transform technique is applied to extract 2-D feature maps from the signals. To overcome the limitations of most traditional feature selection algorithms, which rely on a single fitness evaluation and involve high-dimensional features, this study introduces a novel feature optimization algorithm-the Nifty crow learning algorithm (NCLA). Inspired by the Lévy flight random walk model, originally used to simulate the stochastic movement and long-distance migratory behaviors of birds, the algorithm incorporates an innovative mutation strategy through crow following behavior and a memory updating mechanism, combined with a multitiered fitness evaluation mechanism, achieving more optimal feature selection. The results indicate that NCLA, using only 16 features ( {p} \; \lt 0.05 ), achieves a classification accuracy of 99.04% in just 0.201 s ( {p} \; \lt 0.05 ), with the true positive rate (TPR) and false positive rate (FPR) reaching 99.09% and 1.81%, respectively, demonstrating its exceptional performance in rapid and accurate gesture recognition.
doi_str_mv 10.1109/JSEN.2024.3476071
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10716420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10716420</ieee_id><sourcerecordid>3133497775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c915-217e27d809aca4de3eb2c1020494311c221525de4cde77641acd4558096871fe3</originalsourceid><addsrcrecordid>eNpNkEFPAjEQhRujiYj-ABMPm3he7LTdne0RCCIGMQEO3prSnTVLdIstxPjv3RUOnmYyeW_mzcfYLfABANcPz6vJYiC4UAOpMOcIZ6wHWVakgKo473rJUyXx7ZJdxbjlHDRm2GOjOHmZJrYpk8V4PkxHNlKZTCnuD4GSJTn_3tT72jdJ5UOyom8KyayJO3J_w6Xf-P01u6jsR6SbU-2z9eNkPX5K56_T2Xg4T52GLBWAJLAsuLbOqpIkbYQDLrjSSgI4ISATWUnKlYSYK7CuVO0DXOcFQkWyz-6Pa3fBfx3ahGbrD6FpLxoJUiqNiFmrgqPKBR9joMrsQv1pw48BbjpSpiNlOlLmRKr13B09NRH90yPkSnD5C8HfYj4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133497775</pqid></control><display><type>article</type><title>sEMG and NCLA-Based Gesture Recognition for Sewer Inspection Robot</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yin, Shiyi ; Lu, Bolin ; Li, Chuanjiang ; Gu, Ya</creator><creatorcontrib>Yin, Shiyi ; Lu, Bolin ; Li, Chuanjiang ; Gu, Ya</creatorcontrib><description><![CDATA[In the domain of human-computer interaction (HCI), the recognition of emergency gestures based on surface electromyography (sEMG) signals is critical for minimizing the risk of inaccurate control in sewer inspection robots. This study is dedicated to establish a mapping relationship between forearm multichannel sEMG signals and emergency gestures, leading to the creation of the rainwater and sewage management gesture dataset (RSMGD) alongside a corresponding gesture recognition methodology. A comprehensive evaluation encompassing classification accuracy, CPU running time, and required feature dimensionality is conducted for this gesture recognition. Initially, RSMGD is collected utilizing Noraxon equipment, and an effective wavelet transform technique is applied to extract 2-D feature maps from the signals. To overcome the limitations of most traditional feature selection algorithms, which rely on a single fitness evaluation and involve high-dimensional features, this study introduces a novel feature optimization algorithm-the Nifty crow learning algorithm (NCLA). Inspired by the Lévy flight random walk model, originally used to simulate the stochastic movement and long-distance migratory behaviors of birds, the algorithm incorporates an innovative mutation strategy through crow following behavior and a memory updating mechanism, combined with a multitiered fitness evaluation mechanism, achieving more optimal feature selection. The results indicate that NCLA, using only 16 features (<inline-formula> <tex-math notation="LaTeX">{p} \; \lt 0.05 </tex-math></inline-formula>), achieves a classification accuracy of 99.04% in just 0.201 s (<inline-formula> <tex-math notation="LaTeX">{p} \; \lt 0.05 </tex-math></inline-formula>), with the true positive rate (TPR) and false positive rate (FPR) reaching 99.09% and 1.81%, respectively, demonstrating its exceptional performance in rapid and accurate gesture recognition.]]></description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3476071</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Algorithms ; Classification ; Classification algorithms ; Continuous wavelet transforms ; Control equipment ; Electrodes ; Electromyography ; Emergency equipment ; Emergency management ; Feature extraction ; Feature maps ; Feature selection ; Gesture recognition ; Human-computer interface ; Inspection ; Machine learning ; Nearest neighbor methods ; Nifty crow learning algorithm (NCLA) ; Rain water ; rainwater and sewage management gesture dataset (RSMGD) ; Random walk ; Real-time systems ; Robot control ; surface electromyography (sEMG) ; Time-frequency analysis ; Wavelet transforms</subject><ispartof>IEEE sensors journal, 2024-01, Vol.24 (23), p.39373-39382</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8552-9349 ; 0000-0003-2337-5043 ; 0000-0002-0167-3341 ; 0009-0001-4070-3777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10716420$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Yin, Shiyi</creatorcontrib><creatorcontrib>Lu, Bolin</creatorcontrib><creatorcontrib>Li, Chuanjiang</creatorcontrib><creatorcontrib>Gu, Ya</creatorcontrib><title>sEMG and NCLA-Based Gesture Recognition for Sewer Inspection Robot</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description><![CDATA[In the domain of human-computer interaction (HCI), the recognition of emergency gestures based on surface electromyography (sEMG) signals is critical for minimizing the risk of inaccurate control in sewer inspection robots. This study is dedicated to establish a mapping relationship between forearm multichannel sEMG signals and emergency gestures, leading to the creation of the rainwater and sewage management gesture dataset (RSMGD) alongside a corresponding gesture recognition methodology. A comprehensive evaluation encompassing classification accuracy, CPU running time, and required feature dimensionality is conducted for this gesture recognition. Initially, RSMGD is collected utilizing Noraxon equipment, and an effective wavelet transform technique is applied to extract 2-D feature maps from the signals. To overcome the limitations of most traditional feature selection algorithms, which rely on a single fitness evaluation and involve high-dimensional features, this study introduces a novel feature optimization algorithm-the Nifty crow learning algorithm (NCLA). Inspired by the Lévy flight random walk model, originally used to simulate the stochastic movement and long-distance migratory behaviors of birds, the algorithm incorporates an innovative mutation strategy through crow following behavior and a memory updating mechanism, combined with a multitiered fitness evaluation mechanism, achieving more optimal feature selection. The results indicate that NCLA, using only 16 features (<inline-formula> <tex-math notation="LaTeX">{p} \; \lt 0.05 </tex-math></inline-formula>), achieves a classification accuracy of 99.04% in just 0.201 s (<inline-formula> <tex-math notation="LaTeX">{p} \; \lt 0.05 </tex-math></inline-formula>), with the true positive rate (TPR) and false positive rate (FPR) reaching 99.09% and 1.81%, respectively, demonstrating its exceptional performance in rapid and accurate gesture recognition.]]></description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Classification algorithms</subject><subject>Continuous wavelet transforms</subject><subject>Control equipment</subject><subject>Electrodes</subject><subject>Electromyography</subject><subject>Emergency equipment</subject><subject>Emergency management</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Feature selection</subject><subject>Gesture recognition</subject><subject>Human-computer interface</subject><subject>Inspection</subject><subject>Machine learning</subject><subject>Nearest neighbor methods</subject><subject>Nifty crow learning algorithm (NCLA)</subject><subject>Rain water</subject><subject>rainwater and sewage management gesture dataset (RSMGD)</subject><subject>Random walk</subject><subject>Real-time systems</subject><subject>Robot control</subject><subject>surface electromyography (sEMG)</subject><subject>Time-frequency analysis</subject><subject>Wavelet transforms</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkEFPAjEQhRujiYj-ABMPm3he7LTdne0RCCIGMQEO3prSnTVLdIstxPjv3RUOnmYyeW_mzcfYLfABANcPz6vJYiC4UAOpMOcIZ6wHWVakgKo473rJUyXx7ZJdxbjlHDRm2GOjOHmZJrYpk8V4PkxHNlKZTCnuD4GSJTn_3tT72jdJ5UOyom8KyayJO3J_w6Xf-P01u6jsR6SbU-2z9eNkPX5K56_T2Xg4T52GLBWAJLAsuLbOqpIkbYQDLrjSSgI4ISATWUnKlYSYK7CuVO0DXOcFQkWyz-6Pa3fBfx3ahGbrD6FpLxoJUiqNiFmrgqPKBR9joMrsQv1pw48BbjpSpiNlOlLmRKr13B09NRH90yPkSnD5C8HfYj4</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Yin, Shiyi</creator><creator>Lu, Bolin</creator><creator>Li, Chuanjiang</creator><creator>Gu, Ya</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8552-9349</orcidid><orcidid>https://orcid.org/0000-0003-2337-5043</orcidid><orcidid>https://orcid.org/0000-0002-0167-3341</orcidid><orcidid>https://orcid.org/0009-0001-4070-3777</orcidid></search><sort><creationdate>20240101</creationdate><title>sEMG and NCLA-Based Gesture Recognition for Sewer Inspection Robot</title><author>Yin, Shiyi ; Lu, Bolin ; Li, Chuanjiang ; Gu, Ya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c915-217e27d809aca4de3eb2c1020494311c221525de4cde77641acd4558096871fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Classification algorithms</topic><topic>Continuous wavelet transforms</topic><topic>Control equipment</topic><topic>Electrodes</topic><topic>Electromyography</topic><topic>Emergency equipment</topic><topic>Emergency management</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Feature selection</topic><topic>Gesture recognition</topic><topic>Human-computer interface</topic><topic>Inspection</topic><topic>Machine learning</topic><topic>Nearest neighbor methods</topic><topic>Nifty crow learning algorithm (NCLA)</topic><topic>Rain water</topic><topic>rainwater and sewage management gesture dataset (RSMGD)</topic><topic>Random walk</topic><topic>Real-time systems</topic><topic>Robot control</topic><topic>surface electromyography (sEMG)</topic><topic>Time-frequency analysis</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Shiyi</creatorcontrib><creatorcontrib>Lu, Bolin</creatorcontrib><creatorcontrib>Li, Chuanjiang</creatorcontrib><creatorcontrib>Gu, Ya</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Shiyi</au><au>Lu, Bolin</au><au>Li, Chuanjiang</au><au>Gu, Ya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>sEMG and NCLA-Based Gesture Recognition for Sewer Inspection Robot</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>24</volume><issue>23</issue><spage>39373</spage><epage>39382</epage><pages>39373-39382</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract><![CDATA[In the domain of human-computer interaction (HCI), the recognition of emergency gestures based on surface electromyography (sEMG) signals is critical for minimizing the risk of inaccurate control in sewer inspection robots. This study is dedicated to establish a mapping relationship between forearm multichannel sEMG signals and emergency gestures, leading to the creation of the rainwater and sewage management gesture dataset (RSMGD) alongside a corresponding gesture recognition methodology. A comprehensive evaluation encompassing classification accuracy, CPU running time, and required feature dimensionality is conducted for this gesture recognition. Initially, RSMGD is collected utilizing Noraxon equipment, and an effective wavelet transform technique is applied to extract 2-D feature maps from the signals. To overcome the limitations of most traditional feature selection algorithms, which rely on a single fitness evaluation and involve high-dimensional features, this study introduces a novel feature optimization algorithm-the Nifty crow learning algorithm (NCLA). Inspired by the Lévy flight random walk model, originally used to simulate the stochastic movement and long-distance migratory behaviors of birds, the algorithm incorporates an innovative mutation strategy through crow following behavior and a memory updating mechanism, combined with a multitiered fitness evaluation mechanism, achieving more optimal feature selection. The results indicate that NCLA, using only 16 features (<inline-formula> <tex-math notation="LaTeX">{p} \; \lt 0.05 </tex-math></inline-formula>), achieves a classification accuracy of 99.04% in just 0.201 s (<inline-formula> <tex-math notation="LaTeX">{p} \; \lt 0.05 </tex-math></inline-formula>), with the true positive rate (TPR) and false positive rate (FPR) reaching 99.09% and 1.81%, respectively, demonstrating its exceptional performance in rapid and accurate gesture recognition.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3476071</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8552-9349</orcidid><orcidid>https://orcid.org/0000-0003-2337-5043</orcidid><orcidid>https://orcid.org/0000-0002-0167-3341</orcidid><orcidid>https://orcid.org/0009-0001-4070-3777</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-01, Vol.24 (23), p.39373-39382
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_10716420
source IEEE Electronic Library (IEL) Journals
subjects Accuracy
Algorithms
Classification
Classification algorithms
Continuous wavelet transforms
Control equipment
Electrodes
Electromyography
Emergency equipment
Emergency management
Feature extraction
Feature maps
Feature selection
Gesture recognition
Human-computer interface
Inspection
Machine learning
Nearest neighbor methods
Nifty crow learning algorithm (NCLA)
Rain water
rainwater and sewage management gesture dataset (RSMGD)
Random walk
Real-time systems
Robot control
surface electromyography (sEMG)
Time-frequency analysis
Wavelet transforms
title sEMG and NCLA-Based Gesture Recognition for Sewer Inspection Robot
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A40%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=sEMG%20and%20NCLA-Based%20Gesture%20Recognition%20for%20Sewer%20Inspection%20Robot&rft.jtitle=IEEE%20sensors%20journal&rft.au=Yin,%20Shiyi&rft.date=2024-01-01&rft.volume=24&rft.issue=23&rft.spage=39373&rft.epage=39382&rft.pages=39373-39382&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3476071&rft_dat=%3Cproquest_ieee_%3E3133497775%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c915-217e27d809aca4de3eb2c1020494311c221525de4cde77641acd4558096871fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3133497775&rft_id=info:pmid/&rft_ieee_id=10716420&rfr_iscdi=true