Loading…
AI/ML-Enhanced Security Monitoring for 5G-Enabled Big Data Sensor Networks
The integration of 5G technology with sensor network systems has enabled extensive connectivity and data exchange between cyber and physical entities. However, this connectivity brings significant challenges in managing vast amounts of data, including issues related to data duplication, scalability,...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Da Silva, Stefania E. Iza Rodriguez, Demostenes Z. Rosa, Renata L. Adasme, Pablo Saadi, Muhammad |
description | The integration of 5G technology with sensor network systems has enabled extensive connectivity and data exchange between cyber and physical entities. However, this connectivity brings significant challenges in managing vast amounts of data, including issues related to data duplication, scalability, and security. In this paper, we propose an advanced AI/MLbased algorithm for enhancing the security of 5 G -enabled sensor networks within a big data environment. Our approach leverages both geographical and temporal data to improve the extraction of critical information from multidimensional time-series data, thereby accurately modeling and analyzing attack patterns. The proposed method achieved an overall detection accuracy of \mathbf{9 3. 3 \%}, demonstrating a good performance in detecting cyber threats. Additionally, the model exhibited scalability by maintaining high throughput with increasing numbers of sensor nodes. The results ensure the safety, reliability, and scalability of 5G-enabled sensor networks in real-world scenarios. |
doi_str_mv | 10.23919/SoftCOM62040.2024.10721857 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10721857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10721857</ieee_id><sourcerecordid>10721857</sourcerecordid><originalsourceid>FETCH-ieee_primary_107218573</originalsourceid><addsrcrecordid>eNqFjr1uwjAYRQ0SEn95gw6WOid8tpPGHlsIUNS0Qzp0Qy444JbayDZCvD0eYO50pXPOcBF6JJBRJoiYNLYN04_6iUIeEdA8I1BSwouyg4aiYFQAYZx30YDwvExZwb_6KPH-BwAYBZYLMUCr59dJ_ZZWZi_NRm1xozYnp8MF19boYJ02O9xah4tFbOT3ISYveodnMsjYGh_Vuwpn6379GPVaefAque0IPcyrz-ky1Uqp9dHpP-ku6_tH9o--Ah3DQBc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>AI/ML-Enhanced Security Monitoring for 5G-Enabled Big Data Sensor Networks</title><source>IEEE Xplore All Conference Series</source><creator>Da Silva, Stefania E. Iza ; Rodriguez, Demostenes Z. ; Rosa, Renata L. ; Adasme, Pablo ; Saadi, Muhammad</creator><creatorcontrib>Da Silva, Stefania E. Iza ; Rodriguez, Demostenes Z. ; Rosa, Renata L. ; Adasme, Pablo ; Saadi, Muhammad</creatorcontrib><description>The integration of 5G technology with sensor network systems has enabled extensive connectivity and data exchange between cyber and physical entities. However, this connectivity brings significant challenges in managing vast amounts of data, including issues related to data duplication, scalability, and security. In this paper, we propose an advanced AI/MLbased algorithm for enhancing the security of 5 G -enabled sensor networks within a big data environment. Our approach leverages both geographical and temporal data to improve the extraction of critical information from multidimensional time-series data, thereby accurately modeling and analyzing attack patterns. The proposed method achieved an overall detection accuracy of \mathbf{9 3. 3 \%}, demonstrating a good performance in detecting cyber threats. Additionally, the model exhibited scalability by maintaining high throughput with increasing numbers of sensor nodes. The results ensure the safety, reliability, and scalability of 5G-enabled sensor networks in real-world scenarios.</description><identifier>EISSN: 1847-358X</identifier><identifier>EISBN: 9532901388</identifier><identifier>EISBN: 9789532901382</identifier><identifier>DOI: 10.23919/SoftCOM62040.2024.10721857</identifier><language>eng</language><publisher>University of Split, FESB</publisher><subject>5G network ; Accuracy ; Analytical models ; Artificial Intelligence ; Big Data ; Data mining ; Data models ; Long short term memory ; Machine Learning ; Monitoring ; Scalability ; Security ; Security Monitoring ; Sensor Networks ; Spatial databases ; Throughput</subject><ispartof>2024 International Conference on Software, Telecommunications and Computer Networks (SoftCOM), 2024, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10721857$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23910,23911,25119,27904,54533,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10721857$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Da Silva, Stefania E. Iza</creatorcontrib><creatorcontrib>Rodriguez, Demostenes Z.</creatorcontrib><creatorcontrib>Rosa, Renata L.</creatorcontrib><creatorcontrib>Adasme, Pablo</creatorcontrib><creatorcontrib>Saadi, Muhammad</creatorcontrib><title>AI/ML-Enhanced Security Monitoring for 5G-Enabled Big Data Sensor Networks</title><title>2024 International Conference on Software, Telecommunications and Computer Networks (SoftCOM)</title><addtitle>SoftCOM</addtitle><description>The integration of 5G technology with sensor network systems has enabled extensive connectivity and data exchange between cyber and physical entities. However, this connectivity brings significant challenges in managing vast amounts of data, including issues related to data duplication, scalability, and security. In this paper, we propose an advanced AI/MLbased algorithm for enhancing the security of 5 G -enabled sensor networks within a big data environment. Our approach leverages both geographical and temporal data to improve the extraction of critical information from multidimensional time-series data, thereby accurately modeling and analyzing attack patterns. The proposed method achieved an overall detection accuracy of \mathbf{9 3. 3 \%}, demonstrating a good performance in detecting cyber threats. Additionally, the model exhibited scalability by maintaining high throughput with increasing numbers of sensor nodes. The results ensure the safety, reliability, and scalability of 5G-enabled sensor networks in real-world scenarios.</description><subject>5G network</subject><subject>Accuracy</subject><subject>Analytical models</subject><subject>Artificial Intelligence</subject><subject>Big Data</subject><subject>Data mining</subject><subject>Data models</subject><subject>Long short term memory</subject><subject>Machine Learning</subject><subject>Monitoring</subject><subject>Scalability</subject><subject>Security</subject><subject>Security Monitoring</subject><subject>Sensor Networks</subject><subject>Spatial databases</subject><subject>Throughput</subject><issn>1847-358X</issn><isbn>9532901388</isbn><isbn>9789532901382</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFjr1uwjAYRQ0SEn95gw6WOid8tpPGHlsIUNS0Qzp0Qy444JbayDZCvD0eYO50pXPOcBF6JJBRJoiYNLYN04_6iUIeEdA8I1BSwouyg4aiYFQAYZx30YDwvExZwb_6KPH-BwAYBZYLMUCr59dJ_ZZWZi_NRm1xozYnp8MF19boYJ02O9xah4tFbOT3ISYveodnMsjYGh_Vuwpn6379GPVaefAque0IPcyrz-ky1Uqp9dHpP-ku6_tH9o--Ah3DQBc</recordid><startdate>20240926</startdate><enddate>20240926</enddate><creator>Da Silva, Stefania E. Iza</creator><creator>Rodriguez, Demostenes Z.</creator><creator>Rosa, Renata L.</creator><creator>Adasme, Pablo</creator><creator>Saadi, Muhammad</creator><general>University of Split, FESB</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240926</creationdate><title>AI/ML-Enhanced Security Monitoring for 5G-Enabled Big Data Sensor Networks</title><author>Da Silva, Stefania E. Iza ; Rodriguez, Demostenes Z. ; Rosa, Renata L. ; Adasme, Pablo ; Saadi, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_107218573</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>5G network</topic><topic>Accuracy</topic><topic>Analytical models</topic><topic>Artificial Intelligence</topic><topic>Big Data</topic><topic>Data mining</topic><topic>Data models</topic><topic>Long short term memory</topic><topic>Machine Learning</topic><topic>Monitoring</topic><topic>Scalability</topic><topic>Security</topic><topic>Security Monitoring</topic><topic>Sensor Networks</topic><topic>Spatial databases</topic><topic>Throughput</topic><toplevel>online_resources</toplevel><creatorcontrib>Da Silva, Stefania E. Iza</creatorcontrib><creatorcontrib>Rodriguez, Demostenes Z.</creatorcontrib><creatorcontrib>Rosa, Renata L.</creatorcontrib><creatorcontrib>Adasme, Pablo</creatorcontrib><creatorcontrib>Saadi, Muhammad</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Da Silva, Stefania E. Iza</au><au>Rodriguez, Demostenes Z.</au><au>Rosa, Renata L.</au><au>Adasme, Pablo</au><au>Saadi, Muhammad</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>AI/ML-Enhanced Security Monitoring for 5G-Enabled Big Data Sensor Networks</atitle><btitle>2024 International Conference on Software, Telecommunications and Computer Networks (SoftCOM)</btitle><stitle>SoftCOM</stitle><date>2024-09-26</date><risdate>2024</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>1847-358X</eissn><eisbn>9532901388</eisbn><eisbn>9789532901382</eisbn><abstract>The integration of 5G technology with sensor network systems has enabled extensive connectivity and data exchange between cyber and physical entities. However, this connectivity brings significant challenges in managing vast amounts of data, including issues related to data duplication, scalability, and security. In this paper, we propose an advanced AI/MLbased algorithm for enhancing the security of 5 G -enabled sensor networks within a big data environment. Our approach leverages both geographical and temporal data to improve the extraction of critical information from multidimensional time-series data, thereby accurately modeling and analyzing attack patterns. The proposed method achieved an overall detection accuracy of \mathbf{9 3. 3 \%}, demonstrating a good performance in detecting cyber threats. Additionally, the model exhibited scalability by maintaining high throughput with increasing numbers of sensor nodes. The results ensure the safety, reliability, and scalability of 5G-enabled sensor networks in real-world scenarios.</abstract><pub>University of Split, FESB</pub><doi>10.23919/SoftCOM62040.2024.10721857</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 1847-358X |
ispartof | 2024 International Conference on Software, Telecommunications and Computer Networks (SoftCOM), 2024, p.1-6 |
issn | 1847-358X |
language | eng |
recordid | cdi_ieee_primary_10721857 |
source | IEEE Xplore All Conference Series |
subjects | 5G network Accuracy Analytical models Artificial Intelligence Big Data Data mining Data models Long short term memory Machine Learning Monitoring Scalability Security Security Monitoring Sensor Networks Spatial databases Throughput |
title | AI/ML-Enhanced Security Monitoring for 5G-Enabled Big Data Sensor Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A18%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=AI/ML-Enhanced%20Security%20Monitoring%20for%205G-Enabled%20Big%20Data%20Sensor%20Networks&rft.btitle=2024%20International%20Conference%20on%20Software,%20Telecommunications%20and%20Computer%20Networks%20(SoftCOM)&rft.au=Da%20Silva,%20Stefania%20E.%20Iza&rft.date=2024-09-26&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=1847-358X&rft_id=info:doi/10.23919/SoftCOM62040.2024.10721857&rft.eisbn=9532901388&rft.eisbn_list=9789532901382&rft_dat=%3Cieee_CHZPO%3E10721857%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_107218573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10721857&rfr_iscdi=true |