Loading…

AI/ML-Enhanced Security Monitoring for 5G-Enabled Big Data Sensor Networks

The integration of 5G technology with sensor network systems has enabled extensive connectivity and data exchange between cyber and physical entities. However, this connectivity brings significant challenges in managing vast amounts of data, including issues related to data duplication, scalability,...

Full description

Saved in:
Bibliographic Details
Main Authors: Da Silva, Stefania E. Iza, Rodriguez, Demostenes Z., Rosa, Renata L., Adasme, Pablo, Saadi, Muhammad
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Da Silva, Stefania E. Iza
Rodriguez, Demostenes Z.
Rosa, Renata L.
Adasme, Pablo
Saadi, Muhammad
description The integration of 5G technology with sensor network systems has enabled extensive connectivity and data exchange between cyber and physical entities. However, this connectivity brings significant challenges in managing vast amounts of data, including issues related to data duplication, scalability, and security. In this paper, we propose an advanced AI/MLbased algorithm for enhancing the security of 5 G -enabled sensor networks within a big data environment. Our approach leverages both geographical and temporal data to improve the extraction of critical information from multidimensional time-series data, thereby accurately modeling and analyzing attack patterns. The proposed method achieved an overall detection accuracy of \mathbf{9 3. 3 \%}, demonstrating a good performance in detecting cyber threats. Additionally, the model exhibited scalability by maintaining high throughput with increasing numbers of sensor nodes. The results ensure the safety, reliability, and scalability of 5G-enabled sensor networks in real-world scenarios.
doi_str_mv 10.23919/SoftCOM62040.2024.10721857
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10721857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10721857</ieee_id><sourcerecordid>10721857</sourcerecordid><originalsourceid>FETCH-ieee_primary_107218573</originalsourceid><addsrcrecordid>eNqFjr1uwjAYRQ0SEn95gw6WOid8tpPGHlsIUNS0Qzp0Qy444JbayDZCvD0eYO50pXPOcBF6JJBRJoiYNLYN04_6iUIeEdA8I1BSwouyg4aiYFQAYZx30YDwvExZwb_6KPH-BwAYBZYLMUCr59dJ_ZZWZi_NRm1xozYnp8MF19boYJ02O9xah4tFbOT3ISYveodnMsjYGh_Vuwpn6379GPVaefAque0IPcyrz-ky1Uqp9dHpP-ku6_tH9o--Ah3DQBc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>AI/ML-Enhanced Security Monitoring for 5G-Enabled Big Data Sensor Networks</title><source>IEEE Xplore All Conference Series</source><creator>Da Silva, Stefania E. Iza ; Rodriguez, Demostenes Z. ; Rosa, Renata L. ; Adasme, Pablo ; Saadi, Muhammad</creator><creatorcontrib>Da Silva, Stefania E. Iza ; Rodriguez, Demostenes Z. ; Rosa, Renata L. ; Adasme, Pablo ; Saadi, Muhammad</creatorcontrib><description>The integration of 5G technology with sensor network systems has enabled extensive connectivity and data exchange between cyber and physical entities. However, this connectivity brings significant challenges in managing vast amounts of data, including issues related to data duplication, scalability, and security. In this paper, we propose an advanced AI/MLbased algorithm for enhancing the security of 5 G -enabled sensor networks within a big data environment. Our approach leverages both geographical and temporal data to improve the extraction of critical information from multidimensional time-series data, thereby accurately modeling and analyzing attack patterns. The proposed method achieved an overall detection accuracy of \mathbf{9 3. 3 \%}, demonstrating a good performance in detecting cyber threats. Additionally, the model exhibited scalability by maintaining high throughput with increasing numbers of sensor nodes. The results ensure the safety, reliability, and scalability of 5G-enabled sensor networks in real-world scenarios.</description><identifier>EISSN: 1847-358X</identifier><identifier>EISBN: 9532901388</identifier><identifier>EISBN: 9789532901382</identifier><identifier>DOI: 10.23919/SoftCOM62040.2024.10721857</identifier><language>eng</language><publisher>University of Split, FESB</publisher><subject>5G network ; Accuracy ; Analytical models ; Artificial Intelligence ; Big Data ; Data mining ; Data models ; Long short term memory ; Machine Learning ; Monitoring ; Scalability ; Security ; Security Monitoring ; Sensor Networks ; Spatial databases ; Throughput</subject><ispartof>2024 International Conference on Software, Telecommunications and Computer Networks (SoftCOM), 2024, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10721857$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23910,23911,25119,27904,54533,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10721857$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Da Silva, Stefania E. Iza</creatorcontrib><creatorcontrib>Rodriguez, Demostenes Z.</creatorcontrib><creatorcontrib>Rosa, Renata L.</creatorcontrib><creatorcontrib>Adasme, Pablo</creatorcontrib><creatorcontrib>Saadi, Muhammad</creatorcontrib><title>AI/ML-Enhanced Security Monitoring for 5G-Enabled Big Data Sensor Networks</title><title>2024 International Conference on Software, Telecommunications and Computer Networks (SoftCOM)</title><addtitle>SoftCOM</addtitle><description>The integration of 5G technology with sensor network systems has enabled extensive connectivity and data exchange between cyber and physical entities. However, this connectivity brings significant challenges in managing vast amounts of data, including issues related to data duplication, scalability, and security. In this paper, we propose an advanced AI/MLbased algorithm for enhancing the security of 5 G -enabled sensor networks within a big data environment. Our approach leverages both geographical and temporal data to improve the extraction of critical information from multidimensional time-series data, thereby accurately modeling and analyzing attack patterns. The proposed method achieved an overall detection accuracy of \mathbf{9 3. 3 \%}, demonstrating a good performance in detecting cyber threats. Additionally, the model exhibited scalability by maintaining high throughput with increasing numbers of sensor nodes. The results ensure the safety, reliability, and scalability of 5G-enabled sensor networks in real-world scenarios.</description><subject>5G network</subject><subject>Accuracy</subject><subject>Analytical models</subject><subject>Artificial Intelligence</subject><subject>Big Data</subject><subject>Data mining</subject><subject>Data models</subject><subject>Long short term memory</subject><subject>Machine Learning</subject><subject>Monitoring</subject><subject>Scalability</subject><subject>Security</subject><subject>Security Monitoring</subject><subject>Sensor Networks</subject><subject>Spatial databases</subject><subject>Throughput</subject><issn>1847-358X</issn><isbn>9532901388</isbn><isbn>9789532901382</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFjr1uwjAYRQ0SEn95gw6WOid8tpPGHlsIUNS0Qzp0Qy444JbayDZCvD0eYO50pXPOcBF6JJBRJoiYNLYN04_6iUIeEdA8I1BSwouyg4aiYFQAYZx30YDwvExZwb_6KPH-BwAYBZYLMUCr59dJ_ZZWZi_NRm1xozYnp8MF19boYJ02O9xah4tFbOT3ISYveodnMsjYGh_Vuwpn6379GPVaefAque0IPcyrz-ky1Uqp9dHpP-ku6_tH9o--Ah3DQBc</recordid><startdate>20240926</startdate><enddate>20240926</enddate><creator>Da Silva, Stefania E. Iza</creator><creator>Rodriguez, Demostenes Z.</creator><creator>Rosa, Renata L.</creator><creator>Adasme, Pablo</creator><creator>Saadi, Muhammad</creator><general>University of Split, FESB</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240926</creationdate><title>AI/ML-Enhanced Security Monitoring for 5G-Enabled Big Data Sensor Networks</title><author>Da Silva, Stefania E. Iza ; Rodriguez, Demostenes Z. ; Rosa, Renata L. ; Adasme, Pablo ; Saadi, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_107218573</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>5G network</topic><topic>Accuracy</topic><topic>Analytical models</topic><topic>Artificial Intelligence</topic><topic>Big Data</topic><topic>Data mining</topic><topic>Data models</topic><topic>Long short term memory</topic><topic>Machine Learning</topic><topic>Monitoring</topic><topic>Scalability</topic><topic>Security</topic><topic>Security Monitoring</topic><topic>Sensor Networks</topic><topic>Spatial databases</topic><topic>Throughput</topic><toplevel>online_resources</toplevel><creatorcontrib>Da Silva, Stefania E. Iza</creatorcontrib><creatorcontrib>Rodriguez, Demostenes Z.</creatorcontrib><creatorcontrib>Rosa, Renata L.</creatorcontrib><creatorcontrib>Adasme, Pablo</creatorcontrib><creatorcontrib>Saadi, Muhammad</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Da Silva, Stefania E. Iza</au><au>Rodriguez, Demostenes Z.</au><au>Rosa, Renata L.</au><au>Adasme, Pablo</au><au>Saadi, Muhammad</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>AI/ML-Enhanced Security Monitoring for 5G-Enabled Big Data Sensor Networks</atitle><btitle>2024 International Conference on Software, Telecommunications and Computer Networks (SoftCOM)</btitle><stitle>SoftCOM</stitle><date>2024-09-26</date><risdate>2024</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>1847-358X</eissn><eisbn>9532901388</eisbn><eisbn>9789532901382</eisbn><abstract>The integration of 5G technology with sensor network systems has enabled extensive connectivity and data exchange between cyber and physical entities. However, this connectivity brings significant challenges in managing vast amounts of data, including issues related to data duplication, scalability, and security. In this paper, we propose an advanced AI/MLbased algorithm for enhancing the security of 5 G -enabled sensor networks within a big data environment. Our approach leverages both geographical and temporal data to improve the extraction of critical information from multidimensional time-series data, thereby accurately modeling and analyzing attack patterns. The proposed method achieved an overall detection accuracy of \mathbf{9 3. 3 \%}, demonstrating a good performance in detecting cyber threats. Additionally, the model exhibited scalability by maintaining high throughput with increasing numbers of sensor nodes. The results ensure the safety, reliability, and scalability of 5G-enabled sensor networks in real-world scenarios.</abstract><pub>University of Split, FESB</pub><doi>10.23919/SoftCOM62040.2024.10721857</doi></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1847-358X
ispartof 2024 International Conference on Software, Telecommunications and Computer Networks (SoftCOM), 2024, p.1-6
issn 1847-358X
language eng
recordid cdi_ieee_primary_10721857
source IEEE Xplore All Conference Series
subjects 5G network
Accuracy
Analytical models
Artificial Intelligence
Big Data
Data mining
Data models
Long short term memory
Machine Learning
Monitoring
Scalability
Security
Security Monitoring
Sensor Networks
Spatial databases
Throughput
title AI/ML-Enhanced Security Monitoring for 5G-Enabled Big Data Sensor Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A18%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=AI/ML-Enhanced%20Security%20Monitoring%20for%205G-Enabled%20Big%20Data%20Sensor%20Networks&rft.btitle=2024%20International%20Conference%20on%20Software,%20Telecommunications%20and%20Computer%20Networks%20(SoftCOM)&rft.au=Da%20Silva,%20Stefania%20E.%20Iza&rft.date=2024-09-26&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=1847-358X&rft_id=info:doi/10.23919/SoftCOM62040.2024.10721857&rft.eisbn=9532901388&rft.eisbn_list=9789532901382&rft_dat=%3Cieee_CHZPO%3E10721857%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_107218573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10721857&rfr_iscdi=true