Loading…

Arctic Sea Ice Concentration Prediction Using Spatial Attention Deep Learning

With the accelerating impact of global warming, the changes of Arctic sea ice has become a focal point of research. Due to the spatial heterogeneity and the complexity of its evolution, long-term prediction of Arctic sea ice remains a challenge. In this article, a spatial attention U-Net (SAU-Net) m...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in applied earth observations and remote sensing 2024, Vol.17, p.19565-19574
Main Authors: Gu, Haoqi, Zhang, Lianchong, Qin, Mengjiao, Wu, Sensen, Du, Zhenhong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c289t-1bd5d635e27b1a2992b5e54e67be50d0576076eb8a14c9c6af3e523af8cd85df3
container_end_page 19574
container_issue
container_start_page 19565
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume 17
creator Gu, Haoqi
Zhang, Lianchong
Qin, Mengjiao
Wu, Sensen
Du, Zhenhong
description With the accelerating impact of global warming, the changes of Arctic sea ice has become a focal point of research. Due to the spatial heterogeneity and the complexity of its evolution, long-term prediction of Arctic sea ice remains a challenge. In this article, a spatial attention U-Net (SAU-Net) method integrated with a gated spatial attention mechanism is proposed. Extracting and enhancing the spatial features from the historical atmospheric and SIC data, this method improves the accuracy of Arctic sea ice prediction. During the test periods (2018-2020), our method can skillfully predict the Arctic sea ice up to 12 months, outperforming the naive U-Net, linear trend models, and dynamical models, especially in extreme sea ice scenarios. The importance of different atmospheric factors affecting sea ice prediction are also analyzed for further exploration.
doi_str_mv 10.1109/JSTARS.2024.3486187
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10734000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10734000</ieee_id><doaj_id>oai_doaj_org_article_4fc964d99f904a3daf564860180c12e6</doaj_id><sourcerecordid>3127769054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-1bd5d635e27b1a2992b5e54e67be50d0576076eb8a14c9c6af3e523af8cd85df3</originalsourceid><addsrcrecordid>eNpNUctOwzAQtBBIlMIXwCES55T1Oz5W5VVUBCJwthx7g1KVpDjhwN_jkgpx2tXuzOxjCDmnMKMUzNVD-Tp_KWcMmJhxUSha6AMyYVTSnEouD8mEGm5yKkAck5O-XwMopg2fkMd59EPjsxJdtvSYLbrWYztENzRdmz1HDI3_Td_6pn3Pym1quE02H4aE2tWvEbfZCl1sU_-UHNVu0-PZPk7J2-3N6-I-Xz3dLRfzVe5ZYYacVkEGxSUyXVHHjGGVRClQ6QolBJBagVZYFY4Kb7xyNUfJuKsLHwoZaj4ly1E3dG5tt7H5cPHbdq6xv4UuvlsX01kbtKL2RolgTG1AOB5cLVX6ENACPGWoktblqLWN3ecX9oNdd1-xTetbTpnWyoAUCcVHlI9d30es_6ZSsDsP7OiB3Xlg9x4k1sXIahDxH0NzAQD8B7FOgiQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127769054</pqid></control><display><type>article</type><title>Arctic Sea Ice Concentration Prediction Using Spatial Attention Deep Learning</title><source>Alma/SFX Local Collection</source><creator>Gu, Haoqi ; Zhang, Lianchong ; Qin, Mengjiao ; Wu, Sensen ; Du, Zhenhong</creator><creatorcontrib>Gu, Haoqi ; Zhang, Lianchong ; Qin, Mengjiao ; Wu, Sensen ; Du, Zhenhong</creatorcontrib><description>With the accelerating impact of global warming, the changes of Arctic sea ice has become a focal point of research. Due to the spatial heterogeneity and the complexity of its evolution, long-term prediction of Arctic sea ice remains a challenge. In this article, a spatial attention U-Net (SAU-Net) method integrated with a gated spatial attention mechanism is proposed. Extracting and enhancing the spatial features from the historical atmospheric and SIC data, this method improves the accuracy of Arctic sea ice prediction. During the test periods (2018-2020), our method can skillfully predict the Arctic sea ice up to 12 months, outperforming the naive U-Net, linear trend models, and dynamical models, especially in extreme sea ice scenarios. The importance of different atmospheric factors affecting sea ice prediction are also analyzed for further exploration.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2024.3486187</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Arctic ; Atmospheric measurements ; Climate change ; Deep learning ; Dynamic models ; Global warming ; Heterogeneity ; Patchiness ; Predictions ; Predictive models ; Satellite images ; Sea ice ; sea ice concentration (SIC) prediction ; spatial attention ; Spatial discrimination learning ; Spatial heterogeneity ; Spatial resolution ; Spatiotemporal phenomena</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2024, Vol.17, p.19565-19574</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-1bd5d635e27b1a2992b5e54e67be50d0576076eb8a14c9c6af3e523af8cd85df3</cites><orcidid>0000-0001-9449-0415 ; 0009-0003-6619-2754 ; 0000-0001-9322-0149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Gu, Haoqi</creatorcontrib><creatorcontrib>Zhang, Lianchong</creatorcontrib><creatorcontrib>Qin, Mengjiao</creatorcontrib><creatorcontrib>Wu, Sensen</creatorcontrib><creatorcontrib>Du, Zhenhong</creatorcontrib><title>Arctic Sea Ice Concentration Prediction Using Spatial Attention Deep Learning</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>With the accelerating impact of global warming, the changes of Arctic sea ice has become a focal point of research. Due to the spatial heterogeneity and the complexity of its evolution, long-term prediction of Arctic sea ice remains a challenge. In this article, a spatial attention U-Net (SAU-Net) method integrated with a gated spatial attention mechanism is proposed. Extracting and enhancing the spatial features from the historical atmospheric and SIC data, this method improves the accuracy of Arctic sea ice prediction. During the test periods (2018-2020), our method can skillfully predict the Arctic sea ice up to 12 months, outperforming the naive U-Net, linear trend models, and dynamical models, especially in extreme sea ice scenarios. The importance of different atmospheric factors affecting sea ice prediction are also analyzed for further exploration.</description><subject>Arctic</subject><subject>Atmospheric measurements</subject><subject>Climate change</subject><subject>Deep learning</subject><subject>Dynamic models</subject><subject>Global warming</subject><subject>Heterogeneity</subject><subject>Patchiness</subject><subject>Predictions</subject><subject>Predictive models</subject><subject>Satellite images</subject><subject>Sea ice</subject><subject>sea ice concentration (SIC) prediction</subject><subject>spatial attention</subject><subject>Spatial discrimination learning</subject><subject>Spatial heterogeneity</subject><subject>Spatial resolution</subject><subject>Spatiotemporal phenomena</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQtBBIlMIXwCES55T1Oz5W5VVUBCJwthx7g1KVpDjhwN_jkgpx2tXuzOxjCDmnMKMUzNVD-Tp_KWcMmJhxUSha6AMyYVTSnEouD8mEGm5yKkAck5O-XwMopg2fkMd59EPjsxJdtvSYLbrWYztENzRdmz1HDI3_Td_6pn3Pym1quE02H4aE2tWvEbfZCl1sU_-UHNVu0-PZPk7J2-3N6-I-Xz3dLRfzVe5ZYYacVkEGxSUyXVHHjGGVRClQ6QolBJBagVZYFY4Kb7xyNUfJuKsLHwoZaj4ly1E3dG5tt7H5cPHbdq6xv4UuvlsX01kbtKL2RolgTG1AOB5cLVX6ENACPGWoktblqLWN3ecX9oNdd1-xTetbTpnWyoAUCcVHlI9d30es_6ZSsDsP7OiB3Xlg9x4k1sXIahDxH0NzAQD8B7FOgiQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Gu, Haoqi</creator><creator>Zhang, Lianchong</creator><creator>Qin, Mengjiao</creator><creator>Wu, Sensen</creator><creator>Du, Zhenhong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9449-0415</orcidid><orcidid>https://orcid.org/0009-0003-6619-2754</orcidid><orcidid>https://orcid.org/0000-0001-9322-0149</orcidid></search><sort><creationdate>2024</creationdate><title>Arctic Sea Ice Concentration Prediction Using Spatial Attention Deep Learning</title><author>Gu, Haoqi ; Zhang, Lianchong ; Qin, Mengjiao ; Wu, Sensen ; Du, Zhenhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-1bd5d635e27b1a2992b5e54e67be50d0576076eb8a14c9c6af3e523af8cd85df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Arctic</topic><topic>Atmospheric measurements</topic><topic>Climate change</topic><topic>Deep learning</topic><topic>Dynamic models</topic><topic>Global warming</topic><topic>Heterogeneity</topic><topic>Patchiness</topic><topic>Predictions</topic><topic>Predictive models</topic><topic>Satellite images</topic><topic>Sea ice</topic><topic>sea ice concentration (SIC) prediction</topic><topic>spatial attention</topic><topic>Spatial discrimination learning</topic><topic>Spatial heterogeneity</topic><topic>Spatial resolution</topic><topic>Spatiotemporal phenomena</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Haoqi</creatorcontrib><creatorcontrib>Zhang, Lianchong</creatorcontrib><creatorcontrib>Qin, Mengjiao</creatorcontrib><creatorcontrib>Wu, Sensen</creatorcontrib><creatorcontrib>Du, Zhenhong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Haoqi</au><au>Zhang, Lianchong</au><au>Qin, Mengjiao</au><au>Wu, Sensen</au><au>Du, Zhenhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arctic Sea Ice Concentration Prediction Using Spatial Attention Deep Learning</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2024</date><risdate>2024</risdate><volume>17</volume><spage>19565</spage><epage>19574</epage><pages>19565-19574</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>With the accelerating impact of global warming, the changes of Arctic sea ice has become a focal point of research. Due to the spatial heterogeneity and the complexity of its evolution, long-term prediction of Arctic sea ice remains a challenge. In this article, a spatial attention U-Net (SAU-Net) method integrated with a gated spatial attention mechanism is proposed. Extracting and enhancing the spatial features from the historical atmospheric and SIC data, this method improves the accuracy of Arctic sea ice prediction. During the test periods (2018-2020), our method can skillfully predict the Arctic sea ice up to 12 months, outperforming the naive U-Net, linear trend models, and dynamical models, especially in extreme sea ice scenarios. The importance of different atmospheric factors affecting sea ice prediction are also analyzed for further exploration.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2024.3486187</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9449-0415</orcidid><orcidid>https://orcid.org/0009-0003-6619-2754</orcidid><orcidid>https://orcid.org/0000-0001-9322-0149</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2024, Vol.17, p.19565-19574
issn 1939-1404
2151-1535
language eng
recordid cdi_ieee_primary_10734000
source Alma/SFX Local Collection
subjects Arctic
Atmospheric measurements
Climate change
Deep learning
Dynamic models
Global warming
Heterogeneity
Patchiness
Predictions
Predictive models
Satellite images
Sea ice
sea ice concentration (SIC) prediction
spatial attention
Spatial discrimination learning
Spatial heterogeneity
Spatial resolution
Spatiotemporal phenomena
title Arctic Sea Ice Concentration Prediction Using Spatial Attention Deep Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T07%3A17%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arctic%20Sea%20Ice%20Concentration%20Prediction%20Using%20Spatial%20Attention%20Deep%20Learning&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Gu,%20Haoqi&rft.date=2024&rft.volume=17&rft.spage=19565&rft.epage=19574&rft.pages=19565-19574&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2024.3486187&rft_dat=%3Cproquest_ieee_%3E3127769054%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-1bd5d635e27b1a2992b5e54e67be50d0576076eb8a14c9c6af3e523af8cd85df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3127769054&rft_id=info:pmid/&rft_ieee_id=10734000&rfr_iscdi=true