Loading…
Arctic Sea Ice Concentration Prediction Using Spatial Attention Deep Learning
With the accelerating impact of global warming, the changes of Arctic sea ice has become a focal point of research. Due to the spatial heterogeneity and the complexity of its evolution, long-term prediction of Arctic sea ice remains a challenge. In this article, a spatial attention U-Net (SAU-Net) m...
Saved in:
Published in: | IEEE journal of selected topics in applied earth observations and remote sensing 2024, Vol.17, p.19565-19574 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c289t-1bd5d635e27b1a2992b5e54e67be50d0576076eb8a14c9c6af3e523af8cd85df3 |
container_end_page | 19574 |
container_issue | |
container_start_page | 19565 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 17 |
creator | Gu, Haoqi Zhang, Lianchong Qin, Mengjiao Wu, Sensen Du, Zhenhong |
description | With the accelerating impact of global warming, the changes of Arctic sea ice has become a focal point of research. Due to the spatial heterogeneity and the complexity of its evolution, long-term prediction of Arctic sea ice remains a challenge. In this article, a spatial attention U-Net (SAU-Net) method integrated with a gated spatial attention mechanism is proposed. Extracting and enhancing the spatial features from the historical atmospheric and SIC data, this method improves the accuracy of Arctic sea ice prediction. During the test periods (2018-2020), our method can skillfully predict the Arctic sea ice up to 12 months, outperforming the naive U-Net, linear trend models, and dynamical models, especially in extreme sea ice scenarios. The importance of different atmospheric factors affecting sea ice prediction are also analyzed for further exploration. |
doi_str_mv | 10.1109/JSTARS.2024.3486187 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10734000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10734000</ieee_id><doaj_id>oai_doaj_org_article_4fc964d99f904a3daf564860180c12e6</doaj_id><sourcerecordid>3127769054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-1bd5d635e27b1a2992b5e54e67be50d0576076eb8a14c9c6af3e523af8cd85df3</originalsourceid><addsrcrecordid>eNpNUctOwzAQtBBIlMIXwCES55T1Oz5W5VVUBCJwthx7g1KVpDjhwN_jkgpx2tXuzOxjCDmnMKMUzNVD-Tp_KWcMmJhxUSha6AMyYVTSnEouD8mEGm5yKkAck5O-XwMopg2fkMd59EPjsxJdtvSYLbrWYztENzRdmz1HDI3_Td_6pn3Pym1quE02H4aE2tWvEbfZCl1sU_-UHNVu0-PZPk7J2-3N6-I-Xz3dLRfzVe5ZYYacVkEGxSUyXVHHjGGVRClQ6QolBJBagVZYFY4Kb7xyNUfJuKsLHwoZaj4ly1E3dG5tt7H5cPHbdq6xv4UuvlsX01kbtKL2RolgTG1AOB5cLVX6ENACPGWoktblqLWN3ecX9oNdd1-xTetbTpnWyoAUCcVHlI9d30es_6ZSsDsP7OiB3Xlg9x4k1sXIahDxH0NzAQD8B7FOgiQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127769054</pqid></control><display><type>article</type><title>Arctic Sea Ice Concentration Prediction Using Spatial Attention Deep Learning</title><source>Alma/SFX Local Collection</source><creator>Gu, Haoqi ; Zhang, Lianchong ; Qin, Mengjiao ; Wu, Sensen ; Du, Zhenhong</creator><creatorcontrib>Gu, Haoqi ; Zhang, Lianchong ; Qin, Mengjiao ; Wu, Sensen ; Du, Zhenhong</creatorcontrib><description>With the accelerating impact of global warming, the changes of Arctic sea ice has become a focal point of research. Due to the spatial heterogeneity and the complexity of its evolution, long-term prediction of Arctic sea ice remains a challenge. In this article, a spatial attention U-Net (SAU-Net) method integrated with a gated spatial attention mechanism is proposed. Extracting and enhancing the spatial features from the historical atmospheric and SIC data, this method improves the accuracy of Arctic sea ice prediction. During the test periods (2018-2020), our method can skillfully predict the Arctic sea ice up to 12 months, outperforming the naive U-Net, linear trend models, and dynamical models, especially in extreme sea ice scenarios. The importance of different atmospheric factors affecting sea ice prediction are also analyzed for further exploration.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2024.3486187</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Arctic ; Atmospheric measurements ; Climate change ; Deep learning ; Dynamic models ; Global warming ; Heterogeneity ; Patchiness ; Predictions ; Predictive models ; Satellite images ; Sea ice ; sea ice concentration (SIC) prediction ; spatial attention ; Spatial discrimination learning ; Spatial heterogeneity ; Spatial resolution ; Spatiotemporal phenomena</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2024, Vol.17, p.19565-19574</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-1bd5d635e27b1a2992b5e54e67be50d0576076eb8a14c9c6af3e523af8cd85df3</cites><orcidid>0000-0001-9449-0415 ; 0009-0003-6619-2754 ; 0000-0001-9322-0149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Gu, Haoqi</creatorcontrib><creatorcontrib>Zhang, Lianchong</creatorcontrib><creatorcontrib>Qin, Mengjiao</creatorcontrib><creatorcontrib>Wu, Sensen</creatorcontrib><creatorcontrib>Du, Zhenhong</creatorcontrib><title>Arctic Sea Ice Concentration Prediction Using Spatial Attention Deep Learning</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>With the accelerating impact of global warming, the changes of Arctic sea ice has become a focal point of research. Due to the spatial heterogeneity and the complexity of its evolution, long-term prediction of Arctic sea ice remains a challenge. In this article, a spatial attention U-Net (SAU-Net) method integrated with a gated spatial attention mechanism is proposed. Extracting and enhancing the spatial features from the historical atmospheric and SIC data, this method improves the accuracy of Arctic sea ice prediction. During the test periods (2018-2020), our method can skillfully predict the Arctic sea ice up to 12 months, outperforming the naive U-Net, linear trend models, and dynamical models, especially in extreme sea ice scenarios. The importance of different atmospheric factors affecting sea ice prediction are also analyzed for further exploration.</description><subject>Arctic</subject><subject>Atmospheric measurements</subject><subject>Climate change</subject><subject>Deep learning</subject><subject>Dynamic models</subject><subject>Global warming</subject><subject>Heterogeneity</subject><subject>Patchiness</subject><subject>Predictions</subject><subject>Predictive models</subject><subject>Satellite images</subject><subject>Sea ice</subject><subject>sea ice concentration (SIC) prediction</subject><subject>spatial attention</subject><subject>Spatial discrimination learning</subject><subject>Spatial heterogeneity</subject><subject>Spatial resolution</subject><subject>Spatiotemporal phenomena</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQtBBIlMIXwCES55T1Oz5W5VVUBCJwthx7g1KVpDjhwN_jkgpx2tXuzOxjCDmnMKMUzNVD-Tp_KWcMmJhxUSha6AMyYVTSnEouD8mEGm5yKkAck5O-XwMopg2fkMd59EPjsxJdtvSYLbrWYztENzRdmz1HDI3_Td_6pn3Pym1quE02H4aE2tWvEbfZCl1sU_-UHNVu0-PZPk7J2-3N6-I-Xz3dLRfzVe5ZYYacVkEGxSUyXVHHjGGVRClQ6QolBJBagVZYFY4Kb7xyNUfJuKsLHwoZaj4ly1E3dG5tt7H5cPHbdq6xv4UuvlsX01kbtKL2RolgTG1AOB5cLVX6ENACPGWoktblqLWN3ecX9oNdd1-xTetbTpnWyoAUCcVHlI9d30es_6ZSsDsP7OiB3Xlg9x4k1sXIahDxH0NzAQD8B7FOgiQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Gu, Haoqi</creator><creator>Zhang, Lianchong</creator><creator>Qin, Mengjiao</creator><creator>Wu, Sensen</creator><creator>Du, Zhenhong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9449-0415</orcidid><orcidid>https://orcid.org/0009-0003-6619-2754</orcidid><orcidid>https://orcid.org/0000-0001-9322-0149</orcidid></search><sort><creationdate>2024</creationdate><title>Arctic Sea Ice Concentration Prediction Using Spatial Attention Deep Learning</title><author>Gu, Haoqi ; Zhang, Lianchong ; Qin, Mengjiao ; Wu, Sensen ; Du, Zhenhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-1bd5d635e27b1a2992b5e54e67be50d0576076eb8a14c9c6af3e523af8cd85df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Arctic</topic><topic>Atmospheric measurements</topic><topic>Climate change</topic><topic>Deep learning</topic><topic>Dynamic models</topic><topic>Global warming</topic><topic>Heterogeneity</topic><topic>Patchiness</topic><topic>Predictions</topic><topic>Predictive models</topic><topic>Satellite images</topic><topic>Sea ice</topic><topic>sea ice concentration (SIC) prediction</topic><topic>spatial attention</topic><topic>Spatial discrimination learning</topic><topic>Spatial heterogeneity</topic><topic>Spatial resolution</topic><topic>Spatiotemporal phenomena</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Haoqi</creatorcontrib><creatorcontrib>Zhang, Lianchong</creatorcontrib><creatorcontrib>Qin, Mengjiao</creatorcontrib><creatorcontrib>Wu, Sensen</creatorcontrib><creatorcontrib>Du, Zhenhong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Haoqi</au><au>Zhang, Lianchong</au><au>Qin, Mengjiao</au><au>Wu, Sensen</au><au>Du, Zhenhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arctic Sea Ice Concentration Prediction Using Spatial Attention Deep Learning</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2024</date><risdate>2024</risdate><volume>17</volume><spage>19565</spage><epage>19574</epage><pages>19565-19574</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>With the accelerating impact of global warming, the changes of Arctic sea ice has become a focal point of research. Due to the spatial heterogeneity and the complexity of its evolution, long-term prediction of Arctic sea ice remains a challenge. In this article, a spatial attention U-Net (SAU-Net) method integrated with a gated spatial attention mechanism is proposed. Extracting and enhancing the spatial features from the historical atmospheric and SIC data, this method improves the accuracy of Arctic sea ice prediction. During the test periods (2018-2020), our method can skillfully predict the Arctic sea ice up to 12 months, outperforming the naive U-Net, linear trend models, and dynamical models, especially in extreme sea ice scenarios. The importance of different atmospheric factors affecting sea ice prediction are also analyzed for further exploration.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2024.3486187</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9449-0415</orcidid><orcidid>https://orcid.org/0009-0003-6619-2754</orcidid><orcidid>https://orcid.org/0000-0001-9322-0149</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2024, Vol.17, p.19565-19574 |
issn | 1939-1404 2151-1535 |
language | eng |
recordid | cdi_ieee_primary_10734000 |
source | Alma/SFX Local Collection |
subjects | Arctic Atmospheric measurements Climate change Deep learning Dynamic models Global warming Heterogeneity Patchiness Predictions Predictive models Satellite images Sea ice sea ice concentration (SIC) prediction spatial attention Spatial discrimination learning Spatial heterogeneity Spatial resolution Spatiotemporal phenomena |
title | Arctic Sea Ice Concentration Prediction Using Spatial Attention Deep Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T07%3A17%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arctic%20Sea%20Ice%20Concentration%20Prediction%20Using%20Spatial%20Attention%20Deep%20Learning&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Gu,%20Haoqi&rft.date=2024&rft.volume=17&rft.spage=19565&rft.epage=19574&rft.pages=19565-19574&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2024.3486187&rft_dat=%3Cproquest_ieee_%3E3127769054%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-1bd5d635e27b1a2992b5e54e67be50d0576076eb8a14c9c6af3e523af8cd85df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3127769054&rft_id=info:pmid/&rft_ieee_id=10734000&rfr_iscdi=true |