Loading…
ShapeMed-Knee: A Dataset and Neural Shape Model Benchmark for Modeling 3D Femurs
Analyzing anatomic shapes of tissues and organs is pivotal for accurate disease diagnostics and clinical decision-making. One prominent disease that depends on anatomic shape analysis is osteoarthritis, which affects 30 million Americans. To advance osteoarthritis diagnostics and prognostics, we int...
Saved in:
Published in: | IEEE transactions on medical imaging 2024-10, Vol.PP, p.1-1 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on medical imaging |
container_volume | PP |
creator | Gatti, Anthony A. Blankemeier, Louis Veen, Dave Van Hargreaves, Brian Delp, Scott L. Gold, Garry E. Kogan, Feliks Chaudhari, Akshay S. |
description | Analyzing anatomic shapes of tissues and organs is pivotal for accurate disease diagnostics and clinical decision-making. One prominent disease that depends on anatomic shape analysis is osteoarthritis, which affects 30 million Americans. To advance osteoarthritis diagnostics and prognostics, we introduce ShapeMed-Knee , a 3D shape dataset with 9,376 high-resolution, medical-imaging-based 3D shapes of both femur bone and cartilage. Besides data, ShapeMed-Knee includes two benchmarks for assessing reconstruction accuracy and five clinical prediction tasks that assess the utility of learned shape representations. Leveraging ShapeMed-Knee, we develop and evaluate a novel hybrid explicit-implicit neural shape model which achieves up to 40% better reconstruction accuracy than a statistical shape model and implicit neural shape model. Our hybrid models achieve state-of-the-art performance for preserving cartilage biomarkers; they're also the first models to successfully predict localized structural features of osteoarthritis, outperforming shape models and convolutional neural networks applied to raw magnetic resonance images and segmentations. The ShapeMed-Knee dataset provides medical evaluations to reconstruct multiple anatomic surfaces and embed meaningful disease-specific information. ShapeMed-Knee reduces barriers to applying 3D modeling in medicine, and our benchmarks highlight that advancements in 3D modeling can enhance the diagnosis and risk stratification for complex diseases. The dataset, code, and benchmarks will be made freely accessible. |
doi_str_mv | 10.1109/TMI.2024.3485613 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10735783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10735783</ieee_id><sourcerecordid>3120910762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1603-6c5a70cbdc36e4b8b971b2f49a90a019e4aa8c708f9abb607fca25a2df9bf7f13</originalsourceid><addsrcrecordid>eNpNkDtPwzAUhS0EglLYGRDyyJJy_YpjNigUEC0gUSS2yHGuIZBHiZuBf0-gBTFd6eg7R7ofIQcMRoyBOZnPbkYcuBwJmaiYiQ0yYEolEVfyeZMMgOskAoj5DtkN4Q2ASQVmm-wII5XQRg7Iw-OrXeAM8-i2RjylZ_TCLm3AJbV1Tu-wa21Jfxg6a3Is6TnW7rWy7Tv1TbvKivqFigs6waprwx7Z8rYMuL--Q_I0uZyPr6Pp_dXN-GwaORaDiGKnrAaX5U7EKLMkM5pl3EtjDVhgBqW1idOQeGOzLAbtneXK8tybzGvPxJAcr3YXbfPRYVimVREclqWtselCKhgHw0DHvEdhhbq2CaFFny7aon_hM2WQfntMe4_pt8d07bGvHK3Xu6zC_K_wK64HDldAgYj_9rRQOhHiC5PbdX0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120910762</pqid></control><display><type>article</type><title>ShapeMed-Knee: A Dataset and Neural Shape Model Benchmark for Modeling 3D Femurs</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Gatti, Anthony A. ; Blankemeier, Louis ; Veen, Dave Van ; Hargreaves, Brian ; Delp, Scott L. ; Gold, Garry E. ; Kogan, Feliks ; Chaudhari, Akshay S.</creator><creatorcontrib>Gatti, Anthony A. ; Blankemeier, Louis ; Veen, Dave Van ; Hargreaves, Brian ; Delp, Scott L. ; Gold, Garry E. ; Kogan, Feliks ; Chaudhari, Akshay S.</creatorcontrib><description>Analyzing anatomic shapes of tissues and organs is pivotal for accurate disease diagnostics and clinical decision-making. One prominent disease that depends on anatomic shape analysis is osteoarthritis, which affects 30 million Americans. To advance osteoarthritis diagnostics and prognostics, we introduce ShapeMed-Knee , a 3D shape dataset with 9,376 high-resolution, medical-imaging-based 3D shapes of both femur bone and cartilage. Besides data, ShapeMed-Knee includes two benchmarks for assessing reconstruction accuracy and five clinical prediction tasks that assess the utility of learned shape representations. Leveraging ShapeMed-Knee, we develop and evaluate a novel hybrid explicit-implicit neural shape model which achieves up to 40% better reconstruction accuracy than a statistical shape model and implicit neural shape model. Our hybrid models achieve state-of-the-art performance for preserving cartilage biomarkers; they're also the first models to successfully predict localized structural features of osteoarthritis, outperforming shape models and convolutional neural networks applied to raw magnetic resonance images and segmentations. The ShapeMed-Knee dataset provides medical evaluations to reconstruct multiple anatomic surfaces and embed meaningful disease-specific information. ShapeMed-Knee reduces barriers to applying 3D modeling in medicine, and our benchmarks highlight that advancements in 3D modeling can enhance the diagnosis and risk stratification for complex diseases. The dataset, code, and benchmarks will be made freely accessible.</description><identifier>ISSN: 0278-0062</identifier><identifier>ISSN: 1558-254X</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2024.3485613</identifier><identifier>PMID: 39453794</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Biological system modeling ; Biomarkers ; Bones ; Deep Learning ; Diseases ; Image reconstruction ; Magnetic resonance imaging ; Medical diagnostic imaging ; Neural Networks ; Osteoarthritis ; Shape ; Shape Analysis ; Surface reconstruction ; Three-dimensional displays</subject><ispartof>IEEE transactions on medical imaging, 2024-10, Vol.PP, p.1-1</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3207-822X ; 0000-0001-6717-8979 ; 0000-0002-3667-6796 ; 0000-0001-6184-2728</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10735783$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39453794$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gatti, Anthony A.</creatorcontrib><creatorcontrib>Blankemeier, Louis</creatorcontrib><creatorcontrib>Veen, Dave Van</creatorcontrib><creatorcontrib>Hargreaves, Brian</creatorcontrib><creatorcontrib>Delp, Scott L.</creatorcontrib><creatorcontrib>Gold, Garry E.</creatorcontrib><creatorcontrib>Kogan, Feliks</creatorcontrib><creatorcontrib>Chaudhari, Akshay S.</creatorcontrib><title>ShapeMed-Knee: A Dataset and Neural Shape Model Benchmark for Modeling 3D Femurs</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Analyzing anatomic shapes of tissues and organs is pivotal for accurate disease diagnostics and clinical decision-making. One prominent disease that depends on anatomic shape analysis is osteoarthritis, which affects 30 million Americans. To advance osteoarthritis diagnostics and prognostics, we introduce ShapeMed-Knee , a 3D shape dataset with 9,376 high-resolution, medical-imaging-based 3D shapes of both femur bone and cartilage. Besides data, ShapeMed-Knee includes two benchmarks for assessing reconstruction accuracy and five clinical prediction tasks that assess the utility of learned shape representations. Leveraging ShapeMed-Knee, we develop and evaluate a novel hybrid explicit-implicit neural shape model which achieves up to 40% better reconstruction accuracy than a statistical shape model and implicit neural shape model. Our hybrid models achieve state-of-the-art performance for preserving cartilage biomarkers; they're also the first models to successfully predict localized structural features of osteoarthritis, outperforming shape models and convolutional neural networks applied to raw magnetic resonance images and segmentations. The ShapeMed-Knee dataset provides medical evaluations to reconstruct multiple anatomic surfaces and embed meaningful disease-specific information. ShapeMed-Knee reduces barriers to applying 3D modeling in medicine, and our benchmarks highlight that advancements in 3D modeling can enhance the diagnosis and risk stratification for complex diseases. The dataset, code, and benchmarks will be made freely accessible.</description><subject>Biological system modeling</subject><subject>Biomarkers</subject><subject>Bones</subject><subject>Deep Learning</subject><subject>Diseases</subject><subject>Image reconstruction</subject><subject>Magnetic resonance imaging</subject><subject>Medical diagnostic imaging</subject><subject>Neural Networks</subject><subject>Osteoarthritis</subject><subject>Shape</subject><subject>Shape Analysis</subject><subject>Surface reconstruction</subject><subject>Three-dimensional displays</subject><issn>0278-0062</issn><issn>1558-254X</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkDtPwzAUhS0EglLYGRDyyJJy_YpjNigUEC0gUSS2yHGuIZBHiZuBf0-gBTFd6eg7R7ofIQcMRoyBOZnPbkYcuBwJmaiYiQ0yYEolEVfyeZMMgOskAoj5DtkN4Q2ASQVmm-wII5XQRg7Iw-OrXeAM8-i2RjylZ_TCLm3AJbV1Tu-wa21Jfxg6a3Is6TnW7rWy7Tv1TbvKivqFigs6waprwx7Z8rYMuL--Q_I0uZyPr6Pp_dXN-GwaORaDiGKnrAaX5U7EKLMkM5pl3EtjDVhgBqW1idOQeGOzLAbtneXK8tybzGvPxJAcr3YXbfPRYVimVREclqWtselCKhgHw0DHvEdhhbq2CaFFny7aon_hM2WQfntMe4_pt8d07bGvHK3Xu6zC_K_wK64HDldAgYj_9rRQOhHiC5PbdX0</recordid><startdate>20241025</startdate><enddate>20241025</enddate><creator>Gatti, Anthony A.</creator><creator>Blankemeier, Louis</creator><creator>Veen, Dave Van</creator><creator>Hargreaves, Brian</creator><creator>Delp, Scott L.</creator><creator>Gold, Garry E.</creator><creator>Kogan, Feliks</creator><creator>Chaudhari, Akshay S.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3207-822X</orcidid><orcidid>https://orcid.org/0000-0001-6717-8979</orcidid><orcidid>https://orcid.org/0000-0002-3667-6796</orcidid><orcidid>https://orcid.org/0000-0001-6184-2728</orcidid></search><sort><creationdate>20241025</creationdate><title>ShapeMed-Knee: A Dataset and Neural Shape Model Benchmark for Modeling 3D Femurs</title><author>Gatti, Anthony A. ; Blankemeier, Louis ; Veen, Dave Van ; Hargreaves, Brian ; Delp, Scott L. ; Gold, Garry E. ; Kogan, Feliks ; Chaudhari, Akshay S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1603-6c5a70cbdc36e4b8b971b2f49a90a019e4aa8c708f9abb607fca25a2df9bf7f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biological system modeling</topic><topic>Biomarkers</topic><topic>Bones</topic><topic>Deep Learning</topic><topic>Diseases</topic><topic>Image reconstruction</topic><topic>Magnetic resonance imaging</topic><topic>Medical diagnostic imaging</topic><topic>Neural Networks</topic><topic>Osteoarthritis</topic><topic>Shape</topic><topic>Shape Analysis</topic><topic>Surface reconstruction</topic><topic>Three-dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Gatti, Anthony A.</creatorcontrib><creatorcontrib>Blankemeier, Louis</creatorcontrib><creatorcontrib>Veen, Dave Van</creatorcontrib><creatorcontrib>Hargreaves, Brian</creatorcontrib><creatorcontrib>Delp, Scott L.</creatorcontrib><creatorcontrib>Gold, Garry E.</creatorcontrib><creatorcontrib>Kogan, Feliks</creatorcontrib><creatorcontrib>Chaudhari, Akshay S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gatti, Anthony A.</au><au>Blankemeier, Louis</au><au>Veen, Dave Van</au><au>Hargreaves, Brian</au><au>Delp, Scott L.</au><au>Gold, Garry E.</au><au>Kogan, Feliks</au><au>Chaudhari, Akshay S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ShapeMed-Knee: A Dataset and Neural Shape Model Benchmark for Modeling 3D Femurs</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2024-10-25</date><risdate>2024</risdate><volume>PP</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0278-0062</issn><issn>1558-254X</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Analyzing anatomic shapes of tissues and organs is pivotal for accurate disease diagnostics and clinical decision-making. One prominent disease that depends on anatomic shape analysis is osteoarthritis, which affects 30 million Americans. To advance osteoarthritis diagnostics and prognostics, we introduce ShapeMed-Knee , a 3D shape dataset with 9,376 high-resolution, medical-imaging-based 3D shapes of both femur bone and cartilage. Besides data, ShapeMed-Knee includes two benchmarks for assessing reconstruction accuracy and five clinical prediction tasks that assess the utility of learned shape representations. Leveraging ShapeMed-Knee, we develop and evaluate a novel hybrid explicit-implicit neural shape model which achieves up to 40% better reconstruction accuracy than a statistical shape model and implicit neural shape model. Our hybrid models achieve state-of-the-art performance for preserving cartilage biomarkers; they're also the first models to successfully predict localized structural features of osteoarthritis, outperforming shape models and convolutional neural networks applied to raw magnetic resonance images and segmentations. The ShapeMed-Knee dataset provides medical evaluations to reconstruct multiple anatomic surfaces and embed meaningful disease-specific information. ShapeMed-Knee reduces barriers to applying 3D modeling in medicine, and our benchmarks highlight that advancements in 3D modeling can enhance the diagnosis and risk stratification for complex diseases. The dataset, code, and benchmarks will be made freely accessible.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>39453794</pmid><doi>10.1109/TMI.2024.3485613</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3207-822X</orcidid><orcidid>https://orcid.org/0000-0001-6717-8979</orcidid><orcidid>https://orcid.org/0000-0002-3667-6796</orcidid><orcidid>https://orcid.org/0000-0001-6184-2728</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2024-10, Vol.PP, p.1-1 |
issn | 0278-0062 1558-254X 1558-254X |
language | eng |
recordid | cdi_ieee_primary_10735783 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Biological system modeling Biomarkers Bones Deep Learning Diseases Image reconstruction Magnetic resonance imaging Medical diagnostic imaging Neural Networks Osteoarthritis Shape Shape Analysis Surface reconstruction Three-dimensional displays |
title | ShapeMed-Knee: A Dataset and Neural Shape Model Benchmark for Modeling 3D Femurs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A47%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ShapeMed-Knee:%20A%20Dataset%20and%20Neural%20Shape%20Model%20Benchmark%20for%20Modeling%203D%20Femurs&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Gatti,%20Anthony%20A.&rft.date=2024-10-25&rft.volume=PP&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2024.3485613&rft_dat=%3Cproquest_ieee_%3E3120910762%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1603-6c5a70cbdc36e4b8b971b2f49a90a019e4aa8c708f9abb607fca25a2df9bf7f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3120910762&rft_id=info:pmid/39453794&rft_ieee_id=10735783&rfr_iscdi=true |