Loading…

ShapeMed-Knee: A Dataset and Neural Shape Model Benchmark for Modeling 3D Femurs

Analyzing anatomic shapes of tissues and organs is pivotal for accurate disease diagnostics and clinical decision-making. One prominent disease that depends on anatomic shape analysis is osteoarthritis, which affects 30 million Americans. To advance osteoarthritis diagnostics and prognostics, we int...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging 2024-10, Vol.PP, p.1-1
Main Authors: Gatti, Anthony A., Blankemeier, Louis, Veen, Dave Van, Hargreaves, Brian, Delp, Scott L., Gold, Garry E., Kogan, Feliks, Chaudhari, Akshay S.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on medical imaging
container_volume PP
creator Gatti, Anthony A.
Blankemeier, Louis
Veen, Dave Van
Hargreaves, Brian
Delp, Scott L.
Gold, Garry E.
Kogan, Feliks
Chaudhari, Akshay S.
description Analyzing anatomic shapes of tissues and organs is pivotal for accurate disease diagnostics and clinical decision-making. One prominent disease that depends on anatomic shape analysis is osteoarthritis, which affects 30 million Americans. To advance osteoarthritis diagnostics and prognostics, we introduce ShapeMed-Knee , a 3D shape dataset with 9,376 high-resolution, medical-imaging-based 3D shapes of both femur bone and cartilage. Besides data, ShapeMed-Knee includes two benchmarks for assessing reconstruction accuracy and five clinical prediction tasks that assess the utility of learned shape representations. Leveraging ShapeMed-Knee, we develop and evaluate a novel hybrid explicit-implicit neural shape model which achieves up to 40% better reconstruction accuracy than a statistical shape model and implicit neural shape model. Our hybrid models achieve state-of-the-art performance for preserving cartilage biomarkers; they're also the first models to successfully predict localized structural features of osteoarthritis, outperforming shape models and convolutional neural networks applied to raw magnetic resonance images and segmentations. The ShapeMed-Knee dataset provides medical evaluations to reconstruct multiple anatomic surfaces and embed meaningful disease-specific information. ShapeMed-Knee reduces barriers to applying 3D modeling in medicine, and our benchmarks highlight that advancements in 3D modeling can enhance the diagnosis and risk stratification for complex diseases. The dataset, code, and benchmarks will be made freely accessible.
doi_str_mv 10.1109/TMI.2024.3485613
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10735783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10735783</ieee_id><sourcerecordid>3120910762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1603-6c5a70cbdc36e4b8b971b2f49a90a019e4aa8c708f9abb607fca25a2df9bf7f13</originalsourceid><addsrcrecordid>eNpNkDtPwzAUhS0EglLYGRDyyJJy_YpjNigUEC0gUSS2yHGuIZBHiZuBf0-gBTFd6eg7R7ofIQcMRoyBOZnPbkYcuBwJmaiYiQ0yYEolEVfyeZMMgOskAoj5DtkN4Q2ASQVmm-wII5XQRg7Iw-OrXeAM8-i2RjylZ_TCLm3AJbV1Tu-wa21Jfxg6a3Is6TnW7rWy7Tv1TbvKivqFigs6waprwx7Z8rYMuL--Q_I0uZyPr6Pp_dXN-GwaORaDiGKnrAaX5U7EKLMkM5pl3EtjDVhgBqW1idOQeGOzLAbtneXK8tybzGvPxJAcr3YXbfPRYVimVREclqWtselCKhgHw0DHvEdhhbq2CaFFny7aon_hM2WQfntMe4_pt8d07bGvHK3Xu6zC_K_wK64HDldAgYj_9rRQOhHiC5PbdX0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120910762</pqid></control><display><type>article</type><title>ShapeMed-Knee: A Dataset and Neural Shape Model Benchmark for Modeling 3D Femurs</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Gatti, Anthony A. ; Blankemeier, Louis ; Veen, Dave Van ; Hargreaves, Brian ; Delp, Scott L. ; Gold, Garry E. ; Kogan, Feliks ; Chaudhari, Akshay S.</creator><creatorcontrib>Gatti, Anthony A. ; Blankemeier, Louis ; Veen, Dave Van ; Hargreaves, Brian ; Delp, Scott L. ; Gold, Garry E. ; Kogan, Feliks ; Chaudhari, Akshay S.</creatorcontrib><description>Analyzing anatomic shapes of tissues and organs is pivotal for accurate disease diagnostics and clinical decision-making. One prominent disease that depends on anatomic shape analysis is osteoarthritis, which affects 30 million Americans. To advance osteoarthritis diagnostics and prognostics, we introduce ShapeMed-Knee , a 3D shape dataset with 9,376 high-resolution, medical-imaging-based 3D shapes of both femur bone and cartilage. Besides data, ShapeMed-Knee includes two benchmarks for assessing reconstruction accuracy and five clinical prediction tasks that assess the utility of learned shape representations. Leveraging ShapeMed-Knee, we develop and evaluate a novel hybrid explicit-implicit neural shape model which achieves up to 40% better reconstruction accuracy than a statistical shape model and implicit neural shape model. Our hybrid models achieve state-of-the-art performance for preserving cartilage biomarkers; they're also the first models to successfully predict localized structural features of osteoarthritis, outperforming shape models and convolutional neural networks applied to raw magnetic resonance images and segmentations. The ShapeMed-Knee dataset provides medical evaluations to reconstruct multiple anatomic surfaces and embed meaningful disease-specific information. ShapeMed-Knee reduces barriers to applying 3D modeling in medicine, and our benchmarks highlight that advancements in 3D modeling can enhance the diagnosis and risk stratification for complex diseases. The dataset, code, and benchmarks will be made freely accessible.</description><identifier>ISSN: 0278-0062</identifier><identifier>ISSN: 1558-254X</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2024.3485613</identifier><identifier>PMID: 39453794</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Biological system modeling ; Biomarkers ; Bones ; Deep Learning ; Diseases ; Image reconstruction ; Magnetic resonance imaging ; Medical diagnostic imaging ; Neural Networks ; Osteoarthritis ; Shape ; Shape Analysis ; Surface reconstruction ; Three-dimensional displays</subject><ispartof>IEEE transactions on medical imaging, 2024-10, Vol.PP, p.1-1</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3207-822X ; 0000-0001-6717-8979 ; 0000-0002-3667-6796 ; 0000-0001-6184-2728</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10735783$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39453794$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gatti, Anthony A.</creatorcontrib><creatorcontrib>Blankemeier, Louis</creatorcontrib><creatorcontrib>Veen, Dave Van</creatorcontrib><creatorcontrib>Hargreaves, Brian</creatorcontrib><creatorcontrib>Delp, Scott L.</creatorcontrib><creatorcontrib>Gold, Garry E.</creatorcontrib><creatorcontrib>Kogan, Feliks</creatorcontrib><creatorcontrib>Chaudhari, Akshay S.</creatorcontrib><title>ShapeMed-Knee: A Dataset and Neural Shape Model Benchmark for Modeling 3D Femurs</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Analyzing anatomic shapes of tissues and organs is pivotal for accurate disease diagnostics and clinical decision-making. One prominent disease that depends on anatomic shape analysis is osteoarthritis, which affects 30 million Americans. To advance osteoarthritis diagnostics and prognostics, we introduce ShapeMed-Knee , a 3D shape dataset with 9,376 high-resolution, medical-imaging-based 3D shapes of both femur bone and cartilage. Besides data, ShapeMed-Knee includes two benchmarks for assessing reconstruction accuracy and five clinical prediction tasks that assess the utility of learned shape representations. Leveraging ShapeMed-Knee, we develop and evaluate a novel hybrid explicit-implicit neural shape model which achieves up to 40% better reconstruction accuracy than a statistical shape model and implicit neural shape model. Our hybrid models achieve state-of-the-art performance for preserving cartilage biomarkers; they're also the first models to successfully predict localized structural features of osteoarthritis, outperforming shape models and convolutional neural networks applied to raw magnetic resonance images and segmentations. The ShapeMed-Knee dataset provides medical evaluations to reconstruct multiple anatomic surfaces and embed meaningful disease-specific information. ShapeMed-Knee reduces barriers to applying 3D modeling in medicine, and our benchmarks highlight that advancements in 3D modeling can enhance the diagnosis and risk stratification for complex diseases. The dataset, code, and benchmarks will be made freely accessible.</description><subject>Biological system modeling</subject><subject>Biomarkers</subject><subject>Bones</subject><subject>Deep Learning</subject><subject>Diseases</subject><subject>Image reconstruction</subject><subject>Magnetic resonance imaging</subject><subject>Medical diagnostic imaging</subject><subject>Neural Networks</subject><subject>Osteoarthritis</subject><subject>Shape</subject><subject>Shape Analysis</subject><subject>Surface reconstruction</subject><subject>Three-dimensional displays</subject><issn>0278-0062</issn><issn>1558-254X</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkDtPwzAUhS0EglLYGRDyyJJy_YpjNigUEC0gUSS2yHGuIZBHiZuBf0-gBTFd6eg7R7ofIQcMRoyBOZnPbkYcuBwJmaiYiQ0yYEolEVfyeZMMgOskAoj5DtkN4Q2ASQVmm-wII5XQRg7Iw-OrXeAM8-i2RjylZ_TCLm3AJbV1Tu-wa21Jfxg6a3Is6TnW7rWy7Tv1TbvKivqFigs6waprwx7Z8rYMuL--Q_I0uZyPr6Pp_dXN-GwaORaDiGKnrAaX5U7EKLMkM5pl3EtjDVhgBqW1idOQeGOzLAbtneXK8tybzGvPxJAcr3YXbfPRYVimVREclqWtselCKhgHw0DHvEdhhbq2CaFFny7aon_hM2WQfntMe4_pt8d07bGvHK3Xu6zC_K_wK64HDldAgYj_9rRQOhHiC5PbdX0</recordid><startdate>20241025</startdate><enddate>20241025</enddate><creator>Gatti, Anthony A.</creator><creator>Blankemeier, Louis</creator><creator>Veen, Dave Van</creator><creator>Hargreaves, Brian</creator><creator>Delp, Scott L.</creator><creator>Gold, Garry E.</creator><creator>Kogan, Feliks</creator><creator>Chaudhari, Akshay S.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3207-822X</orcidid><orcidid>https://orcid.org/0000-0001-6717-8979</orcidid><orcidid>https://orcid.org/0000-0002-3667-6796</orcidid><orcidid>https://orcid.org/0000-0001-6184-2728</orcidid></search><sort><creationdate>20241025</creationdate><title>ShapeMed-Knee: A Dataset and Neural Shape Model Benchmark for Modeling 3D Femurs</title><author>Gatti, Anthony A. ; Blankemeier, Louis ; Veen, Dave Van ; Hargreaves, Brian ; Delp, Scott L. ; Gold, Garry E. ; Kogan, Feliks ; Chaudhari, Akshay S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1603-6c5a70cbdc36e4b8b971b2f49a90a019e4aa8c708f9abb607fca25a2df9bf7f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biological system modeling</topic><topic>Biomarkers</topic><topic>Bones</topic><topic>Deep Learning</topic><topic>Diseases</topic><topic>Image reconstruction</topic><topic>Magnetic resonance imaging</topic><topic>Medical diagnostic imaging</topic><topic>Neural Networks</topic><topic>Osteoarthritis</topic><topic>Shape</topic><topic>Shape Analysis</topic><topic>Surface reconstruction</topic><topic>Three-dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Gatti, Anthony A.</creatorcontrib><creatorcontrib>Blankemeier, Louis</creatorcontrib><creatorcontrib>Veen, Dave Van</creatorcontrib><creatorcontrib>Hargreaves, Brian</creatorcontrib><creatorcontrib>Delp, Scott L.</creatorcontrib><creatorcontrib>Gold, Garry E.</creatorcontrib><creatorcontrib>Kogan, Feliks</creatorcontrib><creatorcontrib>Chaudhari, Akshay S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gatti, Anthony A.</au><au>Blankemeier, Louis</au><au>Veen, Dave Van</au><au>Hargreaves, Brian</au><au>Delp, Scott L.</au><au>Gold, Garry E.</au><au>Kogan, Feliks</au><au>Chaudhari, Akshay S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ShapeMed-Knee: A Dataset and Neural Shape Model Benchmark for Modeling 3D Femurs</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2024-10-25</date><risdate>2024</risdate><volume>PP</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0278-0062</issn><issn>1558-254X</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Analyzing anatomic shapes of tissues and organs is pivotal for accurate disease diagnostics and clinical decision-making. One prominent disease that depends on anatomic shape analysis is osteoarthritis, which affects 30 million Americans. To advance osteoarthritis diagnostics and prognostics, we introduce ShapeMed-Knee , a 3D shape dataset with 9,376 high-resolution, medical-imaging-based 3D shapes of both femur bone and cartilage. Besides data, ShapeMed-Knee includes two benchmarks for assessing reconstruction accuracy and five clinical prediction tasks that assess the utility of learned shape representations. Leveraging ShapeMed-Knee, we develop and evaluate a novel hybrid explicit-implicit neural shape model which achieves up to 40% better reconstruction accuracy than a statistical shape model and implicit neural shape model. Our hybrid models achieve state-of-the-art performance for preserving cartilage biomarkers; they're also the first models to successfully predict localized structural features of osteoarthritis, outperforming shape models and convolutional neural networks applied to raw magnetic resonance images and segmentations. The ShapeMed-Knee dataset provides medical evaluations to reconstruct multiple anatomic surfaces and embed meaningful disease-specific information. ShapeMed-Knee reduces barriers to applying 3D modeling in medicine, and our benchmarks highlight that advancements in 3D modeling can enhance the diagnosis and risk stratification for complex diseases. The dataset, code, and benchmarks will be made freely accessible.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>39453794</pmid><doi>10.1109/TMI.2024.3485613</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3207-822X</orcidid><orcidid>https://orcid.org/0000-0001-6717-8979</orcidid><orcidid>https://orcid.org/0000-0002-3667-6796</orcidid><orcidid>https://orcid.org/0000-0001-6184-2728</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2024-10, Vol.PP, p.1-1
issn 0278-0062
1558-254X
1558-254X
language eng
recordid cdi_ieee_primary_10735783
source IEEE Electronic Library (IEL) Journals
subjects Biological system modeling
Biomarkers
Bones
Deep Learning
Diseases
Image reconstruction
Magnetic resonance imaging
Medical diagnostic imaging
Neural Networks
Osteoarthritis
Shape
Shape Analysis
Surface reconstruction
Three-dimensional displays
title ShapeMed-Knee: A Dataset and Neural Shape Model Benchmark for Modeling 3D Femurs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A47%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ShapeMed-Knee:%20A%20Dataset%20and%20Neural%20Shape%20Model%20Benchmark%20for%20Modeling%203D%20Femurs&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Gatti,%20Anthony%20A.&rft.date=2024-10-25&rft.volume=PP&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2024.3485613&rft_dat=%3Cproquest_ieee_%3E3120910762%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1603-6c5a70cbdc36e4b8b971b2f49a90a019e4aa8c708f9abb607fca25a2df9bf7f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3120910762&rft_id=info:pmid/39453794&rft_ieee_id=10735783&rfr_iscdi=true