Loading…

Diagnosing Thermal-Interface Aging of Power Devices Using Self-Sensing

In this article, we propose a unique and simple method that diagnoses multiple aging effects in power electronic devices minimally invasively and without the necessity of expensive sensors. Different degradation modes, e.g., fatigue of solder and thermal-interface layers, influence the phase of the...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power electronics 2025-03, Vol.40 (3), p.4386-4398
Main Authors: Austrup, Isabel, van der Broeck, Christoph H., Kalker, Sven, Albert, Tianlong B., Janoth, Fabian, De Doncker, Rik W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c992-9518d769bcfb823a3be91fc9a9764ac22d975126c88de78b0ea2042c5793dc5d3
container_end_page 4398
container_issue 3
container_start_page 4386
container_title IEEE transactions on power electronics
container_volume 40
creator Austrup, Isabel
van der Broeck, Christoph H.
Kalker, Sven
Albert, Tianlong B.
Janoth, Fabian
De Doncker, Rik W.
description In this article, we propose a unique and simple method that diagnoses multiple aging effects in power electronic devices minimally invasively and without the necessity of expensive sensors. Different degradation modes, e.g., fatigue of solder and thermal-interface layers, influence the phase of the thermal impedance frequency response function {\boldsymbol{\angle} \underline{\boldsymbol Z}_{\mathbf{th}}(j\omega)} at specific bandwidths. Thus, tracking changes of the thermal impedance's phase, i.e., the phase shift between periodic device-loss excitation at specific frequencies and the resulting junction temperature response allows identifying these degradation modes. This is exploited by the proposed method for degradation diagnosis, which takes advantage of the temperature dependency of the drain-source voltage. The method excites periodic conduction losses at selected frequencies via small-signal manipulation of the gate-source voltage and measures the phase delay between gate-source and drain-source voltage. The measurable phase delay results partially from the dynamic response of the thermal impedance, because the phase-delayed junction temperature impacts the on -state resistance and therefore the drain-source voltage. Consequently, changes of the measurable phase delay allow identifying changes of {\boldsymbol{\angle} \underline{\boldsymbol Z}_{\mathbf{th}}(j\omega)} and thus diagnosing the above mentioned degradation modes. This article features a detailed analysis of the proposed method using a general sensitivity analysis. A detailed analysis shows that the discussed method is applicable for silicon (Si) mosfet s, gallium nitride (GaN) high-electron-mobility transistor (HEMTs) as well as silicon carbide (SiC) mosfet s. Experiments with SiC mosfet s, being the most emerging technology in industry, demonstrate that the implemented method can effectively diagnose changes of the thermal path between the device and the heat sink that result from different degradation modes.
doi_str_mv 10.1109/TPEL.2024.3488838
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10740344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10740344</ieee_id><sourcerecordid>10_1109_TPEL_2024_3488838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c992-9518d769bcfb823a3be91fc9a9764ac22d975126c88de78b0ea2042c5793dc5d3</originalsourceid><addsrcrecordid>eNpNkE9LAzEUxIMoWKsfQPCwXyD1vSTbJMfSfxYWLHQ9L9nsS11pdyURxW-va3vwNMwwM4cfY_cIE0Swj-V2WUwECDWRyhgjzQUboVXIAUFfshEYk3NjrbxmNym9AaDKAUdstWjdvutT2-2z8pXi0R34pvugGJynbLYf8j5k2_6LYragz9ZTyl7-6js6BL6jbjC37Cq4Q6K7s45ZuVqW8ydePK8381nBvbWC2xxNo6e29qE2QjpZk8XgrbN6qpwXorE6RzH1xjSkTQ3kBCjhc21l4_NGjhmebn3sU4oUqvfYHl38rhCqgUM1cKgGDtWZw-_m4bRpiehfXyuQSskfX15ZVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Diagnosing Thermal-Interface Aging of Power Devices Using Self-Sensing</title><source>IEEE Xplore (Online service)</source><creator>Austrup, Isabel ; van der Broeck, Christoph H. ; Kalker, Sven ; Albert, Tianlong B. ; Janoth, Fabian ; De Doncker, Rik W.</creator><creatorcontrib>Austrup, Isabel ; van der Broeck, Christoph H. ; Kalker, Sven ; Albert, Tianlong B. ; Janoth, Fabian ; De Doncker, Rik W.</creatorcontrib><description><![CDATA[In this article, we propose a unique and simple method that diagnoses multiple aging effects in power electronic devices minimally invasively and without the necessity of expensive sensors. Different degradation modes, e.g., fatigue of solder and thermal-interface layers, influence the phase of the thermal impedance frequency response function <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\angle} \underline{\boldsymbol Z}_{\mathbf{th}}(j\omega)}</tex-math></inline-formula> at specific bandwidths. Thus, tracking changes of the thermal impedance's phase, i.e., the phase shift between periodic device-loss excitation at specific frequencies and the resulting junction temperature response allows identifying these degradation modes. This is exploited by the proposed method for degradation diagnosis, which takes advantage of the temperature dependency of the drain-source voltage. The method excites periodic conduction losses at selected frequencies via small-signal manipulation of the gate-source voltage and measures the phase delay between gate-source and drain-source voltage. The measurable phase delay results partially from the dynamic response of the thermal impedance, because the phase-delayed junction temperature impacts the on -state resistance and therefore the drain-source voltage. Consequently, changes of the measurable phase delay allow identifying changes of <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\angle} \underline{\boldsymbol Z}_{\mathbf{th}}(j\omega)}</tex-math></inline-formula> and thus diagnosing the above mentioned degradation modes. This article features a detailed analysis of the proposed method using a general sensitivity analysis. A detailed analysis shows that the discussed method is applicable for silicon (Si) mosfet s, gallium nitride (GaN) high-electron-mobility transistor (HEMTs) as well as silicon carbide (SiC) mosfet s. Experiments with SiC mosfet s, being the most emerging technology in industry, demonstrate that the implemented method can effectively diagnose changes of the thermal path between the device and the heat sink that result from different degradation modes.]]></description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2024.3488838</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>IEEE</publisher><subject>Condition monitoring ; Degradation ; fault location ; Impedance ; Junctions ; Logic gates ; Loss measurement ; MOSFET ; power semiconductor devices ; silicon carbide (SiC) devices ; Temperature measurement ; Thermal analysis ; Thermal degradation ; thermal impedance ; Voltage measurement</subject><ispartof>IEEE transactions on power electronics, 2025-03, Vol.40 (3), p.4386-4398</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c992-9518d769bcfb823a3be91fc9a9764ac22d975126c88de78b0ea2042c5793dc5d3</cites><orcidid>0000-0003-2369-1329 ; 0009-0003-1381-5057 ; 0000-0002-2698-6029 ; 0009-0007-4009-6237 ; 0000-0001-6953-3858 ; 0009-0001-9704-1014</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10740344$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Austrup, Isabel</creatorcontrib><creatorcontrib>van der Broeck, Christoph H.</creatorcontrib><creatorcontrib>Kalker, Sven</creatorcontrib><creatorcontrib>Albert, Tianlong B.</creatorcontrib><creatorcontrib>Janoth, Fabian</creatorcontrib><creatorcontrib>De Doncker, Rik W.</creatorcontrib><title>Diagnosing Thermal-Interface Aging of Power Devices Using Self-Sensing</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description><![CDATA[In this article, we propose a unique and simple method that diagnoses multiple aging effects in power electronic devices minimally invasively and without the necessity of expensive sensors. Different degradation modes, e.g., fatigue of solder and thermal-interface layers, influence the phase of the thermal impedance frequency response function <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\angle} \underline{\boldsymbol Z}_{\mathbf{th}}(j\omega)}</tex-math></inline-formula> at specific bandwidths. Thus, tracking changes of the thermal impedance's phase, i.e., the phase shift between periodic device-loss excitation at specific frequencies and the resulting junction temperature response allows identifying these degradation modes. This is exploited by the proposed method for degradation diagnosis, which takes advantage of the temperature dependency of the drain-source voltage. The method excites periodic conduction losses at selected frequencies via small-signal manipulation of the gate-source voltage and measures the phase delay between gate-source and drain-source voltage. The measurable phase delay results partially from the dynamic response of the thermal impedance, because the phase-delayed junction temperature impacts the on -state resistance and therefore the drain-source voltage. Consequently, changes of the measurable phase delay allow identifying changes of <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\angle} \underline{\boldsymbol Z}_{\mathbf{th}}(j\omega)}</tex-math></inline-formula> and thus diagnosing the above mentioned degradation modes. This article features a detailed analysis of the proposed method using a general sensitivity analysis. A detailed analysis shows that the discussed method is applicable for silicon (Si) mosfet s, gallium nitride (GaN) high-electron-mobility transistor (HEMTs) as well as silicon carbide (SiC) mosfet s. Experiments with SiC mosfet s, being the most emerging technology in industry, demonstrate that the implemented method can effectively diagnose changes of the thermal path between the device and the heat sink that result from different degradation modes.]]></description><subject>Condition monitoring</subject><subject>Degradation</subject><subject>fault location</subject><subject>Impedance</subject><subject>Junctions</subject><subject>Logic gates</subject><subject>Loss measurement</subject><subject>MOSFET</subject><subject>power semiconductor devices</subject><subject>silicon carbide (SiC) devices</subject><subject>Temperature measurement</subject><subject>Thermal analysis</subject><subject>Thermal degradation</subject><subject>thermal impedance</subject><subject>Voltage measurement</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpNkE9LAzEUxIMoWKsfQPCwXyD1vSTbJMfSfxYWLHQ9L9nsS11pdyURxW-va3vwNMwwM4cfY_cIE0Swj-V2WUwECDWRyhgjzQUboVXIAUFfshEYk3NjrbxmNym9AaDKAUdstWjdvutT2-2z8pXi0R34pvugGJynbLYf8j5k2_6LYragz9ZTyl7-6js6BL6jbjC37Cq4Q6K7s45ZuVqW8ydePK8381nBvbWC2xxNo6e29qE2QjpZk8XgrbN6qpwXorE6RzH1xjSkTQ3kBCjhc21l4_NGjhmebn3sU4oUqvfYHl38rhCqgUM1cKgGDtWZw-_m4bRpiehfXyuQSskfX15ZVQ</recordid><startdate>202503</startdate><enddate>202503</enddate><creator>Austrup, Isabel</creator><creator>van der Broeck, Christoph H.</creator><creator>Kalker, Sven</creator><creator>Albert, Tianlong B.</creator><creator>Janoth, Fabian</creator><creator>De Doncker, Rik W.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2369-1329</orcidid><orcidid>https://orcid.org/0009-0003-1381-5057</orcidid><orcidid>https://orcid.org/0000-0002-2698-6029</orcidid><orcidid>https://orcid.org/0009-0007-4009-6237</orcidid><orcidid>https://orcid.org/0000-0001-6953-3858</orcidid><orcidid>https://orcid.org/0009-0001-9704-1014</orcidid></search><sort><creationdate>202503</creationdate><title>Diagnosing Thermal-Interface Aging of Power Devices Using Self-Sensing</title><author>Austrup, Isabel ; van der Broeck, Christoph H. ; Kalker, Sven ; Albert, Tianlong B. ; Janoth, Fabian ; De Doncker, Rik W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c992-9518d769bcfb823a3be91fc9a9764ac22d975126c88de78b0ea2042c5793dc5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Condition monitoring</topic><topic>Degradation</topic><topic>fault location</topic><topic>Impedance</topic><topic>Junctions</topic><topic>Logic gates</topic><topic>Loss measurement</topic><topic>MOSFET</topic><topic>power semiconductor devices</topic><topic>silicon carbide (SiC) devices</topic><topic>Temperature measurement</topic><topic>Thermal analysis</topic><topic>Thermal degradation</topic><topic>thermal impedance</topic><topic>Voltage measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Austrup, Isabel</creatorcontrib><creatorcontrib>van der Broeck, Christoph H.</creatorcontrib><creatorcontrib>Kalker, Sven</creatorcontrib><creatorcontrib>Albert, Tianlong B.</creatorcontrib><creatorcontrib>Janoth, Fabian</creatorcontrib><creatorcontrib>De Doncker, Rik W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Austrup, Isabel</au><au>van der Broeck, Christoph H.</au><au>Kalker, Sven</au><au>Albert, Tianlong B.</au><au>Janoth, Fabian</au><au>De Doncker, Rik W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diagnosing Thermal-Interface Aging of Power Devices Using Self-Sensing</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2025-03</date><risdate>2025</risdate><volume>40</volume><issue>3</issue><spage>4386</spage><epage>4398</epage><pages>4386-4398</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract><![CDATA[In this article, we propose a unique and simple method that diagnoses multiple aging effects in power electronic devices minimally invasively and without the necessity of expensive sensors. Different degradation modes, e.g., fatigue of solder and thermal-interface layers, influence the phase of the thermal impedance frequency response function <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\angle} \underline{\boldsymbol Z}_{\mathbf{th}}(j\omega)}</tex-math></inline-formula> at specific bandwidths. Thus, tracking changes of the thermal impedance's phase, i.e., the phase shift between periodic device-loss excitation at specific frequencies and the resulting junction temperature response allows identifying these degradation modes. This is exploited by the proposed method for degradation diagnosis, which takes advantage of the temperature dependency of the drain-source voltage. The method excites periodic conduction losses at selected frequencies via small-signal manipulation of the gate-source voltage and measures the phase delay between gate-source and drain-source voltage. The measurable phase delay results partially from the dynamic response of the thermal impedance, because the phase-delayed junction temperature impacts the on -state resistance and therefore the drain-source voltage. Consequently, changes of the measurable phase delay allow identifying changes of <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\angle} \underline{\boldsymbol Z}_{\mathbf{th}}(j\omega)}</tex-math></inline-formula> and thus diagnosing the above mentioned degradation modes. This article features a detailed analysis of the proposed method using a general sensitivity analysis. A detailed analysis shows that the discussed method is applicable for silicon (Si) mosfet s, gallium nitride (GaN) high-electron-mobility transistor (HEMTs) as well as silicon carbide (SiC) mosfet s. Experiments with SiC mosfet s, being the most emerging technology in industry, demonstrate that the implemented method can effectively diagnose changes of the thermal path between the device and the heat sink that result from different degradation modes.]]></abstract><pub>IEEE</pub><doi>10.1109/TPEL.2024.3488838</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2369-1329</orcidid><orcidid>https://orcid.org/0009-0003-1381-5057</orcidid><orcidid>https://orcid.org/0000-0002-2698-6029</orcidid><orcidid>https://orcid.org/0009-0007-4009-6237</orcidid><orcidid>https://orcid.org/0000-0001-6953-3858</orcidid><orcidid>https://orcid.org/0009-0001-9704-1014</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2025-03, Vol.40 (3), p.4386-4398
issn 0885-8993
1941-0107
language eng
recordid cdi_ieee_primary_10740344
source IEEE Xplore (Online service)
subjects Condition monitoring
Degradation
fault location
Impedance
Junctions
Logic gates
Loss measurement
MOSFET
power semiconductor devices
silicon carbide (SiC) devices
Temperature measurement
Thermal analysis
Thermal degradation
thermal impedance
Voltage measurement
title Diagnosing Thermal-Interface Aging of Power Devices Using Self-Sensing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A02%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diagnosing%20Thermal-Interface%20Aging%20of%20Power%20Devices%20Using%20Self-Sensing&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Austrup,%20Isabel&rft.date=2025-03&rft.volume=40&rft.issue=3&rft.spage=4386&rft.epage=4398&rft.pages=4386-4398&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2024.3488838&rft_dat=%3Ccrossref_ieee_%3E10_1109_TPEL_2024_3488838%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c992-9518d769bcfb823a3be91fc9a9764ac22d975126c88de78b0ea2042c5793dc5d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10740344&rfr_iscdi=true