Loading…

The Joint Optimization of Caching and Content Delivery in Air-Ground Cooperation Environment

Mobile edge computing offers a promising approach for providing computation and storage services to user terminals. However, the computational resources deployed on the base stations or fixed locations are insufficient for temporary emergency scenarios. To expand mobile edge computing capacity, an a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE internet of things journal 2024-11, p.1-1
Main Authors: Bai, Jingpan, Zhu, Silei, Chen, Yuan, Chen, Yunhao
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1
container_issue
container_start_page 1
container_title IEEE internet of things journal
container_volume
creator Bai, Jingpan
Zhu, Silei
Chen, Yuan
Chen, Yunhao
description Mobile edge computing offers a promising approach for providing computation and storage services to user terminals. However, the computational resources deployed on the base stations or fixed locations are insufficient for temporary emergency scenarios. To expand mobile edge computing capacity, an air-ground cooperation architecture that leverages the low cost, rapid deployment, and mobility of low-altitude platform is proposed. A joint optimization strategy for air-ground cooperation caching and content delivery is introduced to reduce delays caused by limited wireless backhaul capacity, energy constraints of edge nodes in air (ENAs), and repeated content delivery. This strategy incorporates trajectory planning of UAVs, transmission power allocation, downlink bandwidth allocation, content caching, and user association. Content popularity is predicted using an LSTM network based on historical data. We employ the block coordinate descent (BCD) method to address the optimization problem and design the popularity prediction-based air-ground cooperation caching and content delivery (PP-AG3C) algorithm. Numerical simulations show that our algorithm outperforms benchmark algorithms in average delivery delay, data transmission energy, and cache hit rate. When the number of user terminals is 60, compared with PP-AG3C algorithm, The average data transmission energy consumption of TPCU-AG3C algorithm, TCU-AG3C algorithm, TC-AG3C algorithm, RT-AG3C algorithm and FT-AG3C algorithm increased by 30.79%, 49.41%, 76.70%, 152.85% and 51%, respectively.
doi_str_mv 10.1109/JIOT.2024.3490612
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10742096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10742096</ieee_id><sourcerecordid>10_1109_JIOT_2024_3490612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c636-799b7862f8e73b02c1d1ec8146a5166d8b245d9549d55330a11ead1fa5b01a4c3</originalsourceid><addsrcrecordid>eNpNkE1rwkAQQJfSQsX6Awo97B-I3dmvZI-SWqsIXnIshE0yqVt0VzapYH99Y_XgaQbmvTk8Qp6BTQGYeV0tN8WUMy6nQhqmgd-RERc8TaTW_P5mfySTrvtmjA2aAqNH5LPYIl0F53u6OfRu735t74KnoaW5rbfOf1HrG5oH3-PAvOHOHTGeqPN05mKyiOHn_xwOGC_m3B9dDH4_4E_kobW7DifXOSbF-7zIP5L1ZrHMZ-uk1kInqTFVmmneZpiKivEaGsA6A6mtAq2brOJSNUZJ0yglBLMAaBtoraoYWFmLMYHL2zqGrovYlofo9jaeSmDlOVB5DlSeA5XXQIPzcnEcIt7wqeTMaPEHmsxh2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Joint Optimization of Caching and Content Delivery in Air-Ground Cooperation Environment</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Bai, Jingpan ; Zhu, Silei ; Chen, Yuan ; Chen, Yunhao</creator><creatorcontrib>Bai, Jingpan ; Zhu, Silei ; Chen, Yuan ; Chen, Yunhao</creatorcontrib><description>Mobile edge computing offers a promising approach for providing computation and storage services to user terminals. However, the computational resources deployed on the base stations or fixed locations are insufficient for temporary emergency scenarios. To expand mobile edge computing capacity, an air-ground cooperation architecture that leverages the low cost, rapid deployment, and mobility of low-altitude platform is proposed. A joint optimization strategy for air-ground cooperation caching and content delivery is introduced to reduce delays caused by limited wireless backhaul capacity, energy constraints of edge nodes in air (ENAs), and repeated content delivery. This strategy incorporates trajectory planning of UAVs, transmission power allocation, downlink bandwidth allocation, content caching, and user association. Content popularity is predicted using an LSTM network based on historical data. We employ the block coordinate descent (BCD) method to address the optimization problem and design the popularity prediction-based air-ground cooperation caching and content delivery (PP-AG3C) algorithm. Numerical simulations show that our algorithm outperforms benchmark algorithms in average delivery delay, data transmission energy, and cache hit rate. When the number of user terminals is 60, compared with PP-AG3C algorithm, The average data transmission energy consumption of TPCU-AG3C algorithm, TCU-AG3C algorithm, TC-AG3C algorithm, RT-AG3C algorithm and FT-AG3C algorithm increased by 30.79%, 49.41%, 76.70%, 152.85% and 51%, respectively.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2024.3490612</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>IEEE</publisher><subject>Air to ground communication ; Air-ground cooperation ; Autonomous aerial vehicles ; Caching ; Content delivery ; Costs ; Delays ; Internet of Things ; Long short term memory ; Optimization ; Prediction algorithms ; Resource management ; Resource scheduling ; Trajectory planning ; UAV</subject><ispartof>IEEE internet of things journal, 2024-11, p.1-1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6508-9187 ; 0000-0003-1333-1493</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10742096$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Bai, Jingpan</creatorcontrib><creatorcontrib>Zhu, Silei</creatorcontrib><creatorcontrib>Chen, Yuan</creatorcontrib><creatorcontrib>Chen, Yunhao</creatorcontrib><title>The Joint Optimization of Caching and Content Delivery in Air-Ground Cooperation Environment</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Mobile edge computing offers a promising approach for providing computation and storage services to user terminals. However, the computational resources deployed on the base stations or fixed locations are insufficient for temporary emergency scenarios. To expand mobile edge computing capacity, an air-ground cooperation architecture that leverages the low cost, rapid deployment, and mobility of low-altitude platform is proposed. A joint optimization strategy for air-ground cooperation caching and content delivery is introduced to reduce delays caused by limited wireless backhaul capacity, energy constraints of edge nodes in air (ENAs), and repeated content delivery. This strategy incorporates trajectory planning of UAVs, transmission power allocation, downlink bandwidth allocation, content caching, and user association. Content popularity is predicted using an LSTM network based on historical data. We employ the block coordinate descent (BCD) method to address the optimization problem and design the popularity prediction-based air-ground cooperation caching and content delivery (PP-AG3C) algorithm. Numerical simulations show that our algorithm outperforms benchmark algorithms in average delivery delay, data transmission energy, and cache hit rate. When the number of user terminals is 60, compared with PP-AG3C algorithm, The average data transmission energy consumption of TPCU-AG3C algorithm, TCU-AG3C algorithm, TC-AG3C algorithm, RT-AG3C algorithm and FT-AG3C algorithm increased by 30.79%, 49.41%, 76.70%, 152.85% and 51%, respectively.</description><subject>Air to ground communication</subject><subject>Air-ground cooperation</subject><subject>Autonomous aerial vehicles</subject><subject>Caching</subject><subject>Content delivery</subject><subject>Costs</subject><subject>Delays</subject><subject>Internet of Things</subject><subject>Long short term memory</subject><subject>Optimization</subject><subject>Prediction algorithms</subject><subject>Resource management</subject><subject>Resource scheduling</subject><subject>Trajectory planning</subject><subject>UAV</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1rwkAQQJfSQsX6Awo97B-I3dmvZI-SWqsIXnIshE0yqVt0VzapYH99Y_XgaQbmvTk8Qp6BTQGYeV0tN8WUMy6nQhqmgd-RERc8TaTW_P5mfySTrvtmjA2aAqNH5LPYIl0F53u6OfRu735t74KnoaW5rbfOf1HrG5oH3-PAvOHOHTGeqPN05mKyiOHn_xwOGC_m3B9dDH4_4E_kobW7DifXOSbF-7zIP5L1ZrHMZ-uk1kInqTFVmmneZpiKivEaGsA6A6mtAq2brOJSNUZJ0yglBLMAaBtoraoYWFmLMYHL2zqGrovYlofo9jaeSmDlOVB5DlSeA5XXQIPzcnEcIt7wqeTMaPEHmsxh2g</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Bai, Jingpan</creator><creator>Zhu, Silei</creator><creator>Chen, Yuan</creator><creator>Chen, Yunhao</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6508-9187</orcidid><orcidid>https://orcid.org/0000-0003-1333-1493</orcidid></search><sort><creationdate>20241101</creationdate><title>The Joint Optimization of Caching and Content Delivery in Air-Ground Cooperation Environment</title><author>Bai, Jingpan ; Zhu, Silei ; Chen, Yuan ; Chen, Yunhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c636-799b7862f8e73b02c1d1ec8146a5166d8b245d9549d55330a11ead1fa5b01a4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air to ground communication</topic><topic>Air-ground cooperation</topic><topic>Autonomous aerial vehicles</topic><topic>Caching</topic><topic>Content delivery</topic><topic>Costs</topic><topic>Delays</topic><topic>Internet of Things</topic><topic>Long short term memory</topic><topic>Optimization</topic><topic>Prediction algorithms</topic><topic>Resource management</topic><topic>Resource scheduling</topic><topic>Trajectory planning</topic><topic>UAV</topic><toplevel>online_resources</toplevel><creatorcontrib>Bai, Jingpan</creatorcontrib><creatorcontrib>Zhu, Silei</creatorcontrib><creatorcontrib>Chen, Yuan</creatorcontrib><creatorcontrib>Chen, Yunhao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Jingpan</au><au>Zhu, Silei</au><au>Chen, Yuan</au><au>Chen, Yunhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Joint Optimization of Caching and Content Delivery in Air-Ground Cooperation Environment</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2024-11-01</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Mobile edge computing offers a promising approach for providing computation and storage services to user terminals. However, the computational resources deployed on the base stations or fixed locations are insufficient for temporary emergency scenarios. To expand mobile edge computing capacity, an air-ground cooperation architecture that leverages the low cost, rapid deployment, and mobility of low-altitude platform is proposed. A joint optimization strategy for air-ground cooperation caching and content delivery is introduced to reduce delays caused by limited wireless backhaul capacity, energy constraints of edge nodes in air (ENAs), and repeated content delivery. This strategy incorporates trajectory planning of UAVs, transmission power allocation, downlink bandwidth allocation, content caching, and user association. Content popularity is predicted using an LSTM network based on historical data. We employ the block coordinate descent (BCD) method to address the optimization problem and design the popularity prediction-based air-ground cooperation caching and content delivery (PP-AG3C) algorithm. Numerical simulations show that our algorithm outperforms benchmark algorithms in average delivery delay, data transmission energy, and cache hit rate. When the number of user terminals is 60, compared with PP-AG3C algorithm, The average data transmission energy consumption of TPCU-AG3C algorithm, TCU-AG3C algorithm, TC-AG3C algorithm, RT-AG3C algorithm and FT-AG3C algorithm increased by 30.79%, 49.41%, 76.70%, 152.85% and 51%, respectively.</abstract><pub>IEEE</pub><doi>10.1109/JIOT.2024.3490612</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6508-9187</orcidid><orcidid>https://orcid.org/0000-0003-1333-1493</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2024-11, p.1-1
issn 2327-4662
2327-4662
language eng
recordid cdi_ieee_primary_10742096
source IEEE Electronic Library (IEL) Journals
subjects Air to ground communication
Air-ground cooperation
Autonomous aerial vehicles
Caching
Content delivery
Costs
Delays
Internet of Things
Long short term memory
Optimization
Prediction algorithms
Resource management
Resource scheduling
Trajectory planning
UAV
title The Joint Optimization of Caching and Content Delivery in Air-Ground Cooperation Environment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T15%3A07%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Joint%20Optimization%20of%20Caching%20and%20Content%20Delivery%20in%20Air-Ground%20Cooperation%20Environment&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Bai,%20Jingpan&rft.date=2024-11-01&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2024.3490612&rft_dat=%3Ccrossref_ieee_%3E10_1109_JIOT_2024_3490612%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c636-799b7862f8e73b02c1d1ec8146a5166d8b245d9549d55330a11ead1fa5b01a4c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10742096&rfr_iscdi=true