Loading…

Probabilistic Parameter Estimators and Calibration Metrics for Pose Estimation from Image Features

This paper addresses the challenge of probabilistic parameter estimation given measurement uncertainty in real-time. We provide a general formulation and apply this to pose estimation for an autonomous visual landing system. We present three probabilistic parameter estimators: a least-squares sampli...

Full description

Saved in:
Bibliographic Details
Main Authors: Valentin, Romeo, Katz, Sydney M., Lee, Joonghyun, Walker, Don, Sorgenfrei, Matthew, Kochenderfer, Mykel J.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 09
container_issue
container_start_page 01
container_title
container_volume
creator Valentin, Romeo
Katz, Sydney M.
Lee, Joonghyun
Walker, Don
Sorgenfrei, Matthew
Kochenderfer, Mykel J.
description This paper addresses the challenge of probabilistic parameter estimation given measurement uncertainty in real-time. We provide a general formulation and apply this to pose estimation for an autonomous visual landing system. We present three probabilistic parameter estimators: a least-squares sampling approach, a linear approximation method, and a probabilistic programming estimator. To evaluate these estimators, we introduce novel closed-form expressions for measuring calibration and sharpness specifically for multivariate normal distributions. Our experimental study compares the three estimators under various noise conditions. We demonstrate that the linear approximation estimator can produce sharp and well-calibrated pose predictions significantly faster than the other methods but may yield overconfident predictions in certain scenarios. Additionally, we demonstrate that these estimators can be integrated with a Kalman filter for continuous pose estimation during a runway approach where we observe a 50% improvement in sharpness while maintaining marginal calibration. This work contributes to the integration of data-driven computer vision models into complex safety-critical aircraft systems and provides a foundation for developing rigorous certification guidelines for such systems.
doi_str_mv 10.1109/DASC62030.2024.10748707
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10748707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10748707</ieee_id><sourcerecordid>10748707</sourcerecordid><originalsourceid>FETCH-ieee_primary_107487073</originalsourceid><addsrcrecordid>eNqFjsFKw0AURaeCYNH8geD7gcY3k0wms5TYogshoPvyUl_KlKRT3owL_94Kdu3qcjnnwlXqQWOpNfrH56f3rjFYYWnQ1KVGV7cO3UIV3vm2sljVvtF4pZZGW7tyBv2NKlI6IKLG1ja2XqqhlzjQEKaQcthBT0IzZxZYn_tMOUoCOn5CR1MYhHKIR3jjLGGXYIwCfUx8cX_ZKHGG15n2DBum_CWc7tT1SFPi4i9v1f1m_dG9rAIzb09ynsr39nK_-gf_AECYSbA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Probabilistic Parameter Estimators and Calibration Metrics for Pose Estimation from Image Features</title><source>IEEE Xplore All Conference Series</source><creator>Valentin, Romeo ; Katz, Sydney M. ; Lee, Joonghyun ; Walker, Don ; Sorgenfrei, Matthew ; Kochenderfer, Mykel J.</creator><creatorcontrib>Valentin, Romeo ; Katz, Sydney M. ; Lee, Joonghyun ; Walker, Don ; Sorgenfrei, Matthew ; Kochenderfer, Mykel J.</creatorcontrib><description>This paper addresses the challenge of probabilistic parameter estimation given measurement uncertainty in real-time. We provide a general formulation and apply this to pose estimation for an autonomous visual landing system. We present three probabilistic parameter estimators: a least-squares sampling approach, a linear approximation method, and a probabilistic programming estimator. To evaluate these estimators, we introduce novel closed-form expressions for measuring calibration and sharpness specifically for multivariate normal distributions. Our experimental study compares the three estimators under various noise conditions. We demonstrate that the linear approximation estimator can produce sharp and well-calibrated pose predictions significantly faster than the other methods but may yield overconfident predictions in certain scenarios. Additionally, we demonstrate that these estimators can be integrated with a Kalman filter for continuous pose estimation during a runway approach where we observe a 50% improvement in sharpness while maintaining marginal calibration. This work contributes to the integration of data-driven computer vision models into complex safety-critical aircraft systems and provides a foundation for developing rigorous certification guidelines for such systems.</description><identifier>EISSN: 2155-7209</identifier><identifier>EISBN: 9798350349610</identifier><identifier>DOI: 10.1109/DASC62030.2024.10748707</identifier><language>eng</language><publisher>IEEE</publisher><subject>Calibration ; Computer Vision ; Kalman filters ; Linear approximation ; Measurement uncertainty ; Noise ; Parameter estimation ; Pose estimation ; Probabilistic logic ; Probabilistic Programming ; Programming ; Sensors ; Uncertainty Quantification</subject><ispartof>IEEE/AIAA Digital Avionics Systems Conference, 2024, p.01-09</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10748707$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10748707$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Valentin, Romeo</creatorcontrib><creatorcontrib>Katz, Sydney M.</creatorcontrib><creatorcontrib>Lee, Joonghyun</creatorcontrib><creatorcontrib>Walker, Don</creatorcontrib><creatorcontrib>Sorgenfrei, Matthew</creatorcontrib><creatorcontrib>Kochenderfer, Mykel J.</creatorcontrib><title>Probabilistic Parameter Estimators and Calibration Metrics for Pose Estimation from Image Features</title><title>IEEE/AIAA Digital Avionics Systems Conference</title><addtitle>DASC</addtitle><description>This paper addresses the challenge of probabilistic parameter estimation given measurement uncertainty in real-time. We provide a general formulation and apply this to pose estimation for an autonomous visual landing system. We present three probabilistic parameter estimators: a least-squares sampling approach, a linear approximation method, and a probabilistic programming estimator. To evaluate these estimators, we introduce novel closed-form expressions for measuring calibration and sharpness specifically for multivariate normal distributions. Our experimental study compares the three estimators under various noise conditions. We demonstrate that the linear approximation estimator can produce sharp and well-calibrated pose predictions significantly faster than the other methods but may yield overconfident predictions in certain scenarios. Additionally, we demonstrate that these estimators can be integrated with a Kalman filter for continuous pose estimation during a runway approach where we observe a 50% improvement in sharpness while maintaining marginal calibration. This work contributes to the integration of data-driven computer vision models into complex safety-critical aircraft systems and provides a foundation for developing rigorous certification guidelines for such systems.</description><subject>Calibration</subject><subject>Computer Vision</subject><subject>Kalman filters</subject><subject>Linear approximation</subject><subject>Measurement uncertainty</subject><subject>Noise</subject><subject>Parameter estimation</subject><subject>Pose estimation</subject><subject>Probabilistic logic</subject><subject>Probabilistic Programming</subject><subject>Programming</subject><subject>Sensors</subject><subject>Uncertainty Quantification</subject><issn>2155-7209</issn><isbn>9798350349610</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFjsFKw0AURaeCYNH8geD7gcY3k0wms5TYogshoPvyUl_KlKRT3owL_94Kdu3qcjnnwlXqQWOpNfrH56f3rjFYYWnQ1KVGV7cO3UIV3vm2sljVvtF4pZZGW7tyBv2NKlI6IKLG1ja2XqqhlzjQEKaQcthBT0IzZxZYn_tMOUoCOn5CR1MYhHKIR3jjLGGXYIwCfUx8cX_ZKHGG15n2DBum_CWc7tT1SFPi4i9v1f1m_dG9rAIzb09ynsr39nK_-gf_AECYSbA</recordid><startdate>20240929</startdate><enddate>20240929</enddate><creator>Valentin, Romeo</creator><creator>Katz, Sydney M.</creator><creator>Lee, Joonghyun</creator><creator>Walker, Don</creator><creator>Sorgenfrei, Matthew</creator><creator>Kochenderfer, Mykel J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20240929</creationdate><title>Probabilistic Parameter Estimators and Calibration Metrics for Pose Estimation from Image Features</title><author>Valentin, Romeo ; Katz, Sydney M. ; Lee, Joonghyun ; Walker, Don ; Sorgenfrei, Matthew ; Kochenderfer, Mykel J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_107487073</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Calibration</topic><topic>Computer Vision</topic><topic>Kalman filters</topic><topic>Linear approximation</topic><topic>Measurement uncertainty</topic><topic>Noise</topic><topic>Parameter estimation</topic><topic>Pose estimation</topic><topic>Probabilistic logic</topic><topic>Probabilistic Programming</topic><topic>Programming</topic><topic>Sensors</topic><topic>Uncertainty Quantification</topic><toplevel>online_resources</toplevel><creatorcontrib>Valentin, Romeo</creatorcontrib><creatorcontrib>Katz, Sydney M.</creatorcontrib><creatorcontrib>Lee, Joonghyun</creatorcontrib><creatorcontrib>Walker, Don</creatorcontrib><creatorcontrib>Sorgenfrei, Matthew</creatorcontrib><creatorcontrib>Kochenderfer, Mykel J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Valentin, Romeo</au><au>Katz, Sydney M.</au><au>Lee, Joonghyun</au><au>Walker, Don</au><au>Sorgenfrei, Matthew</au><au>Kochenderfer, Mykel J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Probabilistic Parameter Estimators and Calibration Metrics for Pose Estimation from Image Features</atitle><btitle>IEEE/AIAA Digital Avionics Systems Conference</btitle><stitle>DASC</stitle><date>2024-09-29</date><risdate>2024</risdate><spage>01</spage><epage>09</epage><pages>01-09</pages><eissn>2155-7209</eissn><eisbn>9798350349610</eisbn><abstract>This paper addresses the challenge of probabilistic parameter estimation given measurement uncertainty in real-time. We provide a general formulation and apply this to pose estimation for an autonomous visual landing system. We present three probabilistic parameter estimators: a least-squares sampling approach, a linear approximation method, and a probabilistic programming estimator. To evaluate these estimators, we introduce novel closed-form expressions for measuring calibration and sharpness specifically for multivariate normal distributions. Our experimental study compares the three estimators under various noise conditions. We demonstrate that the linear approximation estimator can produce sharp and well-calibrated pose predictions significantly faster than the other methods but may yield overconfident predictions in certain scenarios. Additionally, we demonstrate that these estimators can be integrated with a Kalman filter for continuous pose estimation during a runway approach where we observe a 50% improvement in sharpness while maintaining marginal calibration. This work contributes to the integration of data-driven computer vision models into complex safety-critical aircraft systems and provides a foundation for developing rigorous certification guidelines for such systems.</abstract><pub>IEEE</pub><doi>10.1109/DASC62030.2024.10748707</doi></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2155-7209
ispartof IEEE/AIAA Digital Avionics Systems Conference, 2024, p.01-09
issn 2155-7209
language eng
recordid cdi_ieee_primary_10748707
source IEEE Xplore All Conference Series
subjects Calibration
Computer Vision
Kalman filters
Linear approximation
Measurement uncertainty
Noise
Parameter estimation
Pose estimation
Probabilistic logic
Probabilistic Programming
Programming
Sensors
Uncertainty Quantification
title Probabilistic Parameter Estimators and Calibration Metrics for Pose Estimation from Image Features
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A05%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Probabilistic%20Parameter%20Estimators%20and%20Calibration%20Metrics%20for%20Pose%20Estimation%20from%20Image%20Features&rft.btitle=IEEE/AIAA%20Digital%20Avionics%20Systems%20Conference&rft.au=Valentin,%20Romeo&rft.date=2024-09-29&rft.spage=01&rft.epage=09&rft.pages=01-09&rft.eissn=2155-7209&rft_id=info:doi/10.1109/DASC62030.2024.10748707&rft.eisbn=9798350349610&rft_dat=%3Cieee_CHZPO%3E10748707%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_107487073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10748707&rfr_iscdi=true