Loading…
Probabilistic Parameter Estimators and Calibration Metrics for Pose Estimation from Image Features
This paper addresses the challenge of probabilistic parameter estimation given measurement uncertainty in real-time. We provide a general formulation and apply this to pose estimation for an autonomous visual landing system. We present three probabilistic parameter estimators: a least-squares sampli...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 09 |
container_issue | |
container_start_page | 01 |
container_title | |
container_volume | |
creator | Valentin, Romeo Katz, Sydney M. Lee, Joonghyun Walker, Don Sorgenfrei, Matthew Kochenderfer, Mykel J. |
description | This paper addresses the challenge of probabilistic parameter estimation given measurement uncertainty in real-time. We provide a general formulation and apply this to pose estimation for an autonomous visual landing system. We present three probabilistic parameter estimators: a least-squares sampling approach, a linear approximation method, and a probabilistic programming estimator. To evaluate these estimators, we introduce novel closed-form expressions for measuring calibration and sharpness specifically for multivariate normal distributions. Our experimental study compares the three estimators under various noise conditions. We demonstrate that the linear approximation estimator can produce sharp and well-calibrated pose predictions significantly faster than the other methods but may yield overconfident predictions in certain scenarios. Additionally, we demonstrate that these estimators can be integrated with a Kalman filter for continuous pose estimation during a runway approach where we observe a 50% improvement in sharpness while maintaining marginal calibration. This work contributes to the integration of data-driven computer vision models into complex safety-critical aircraft systems and provides a foundation for developing rigorous certification guidelines for such systems. |
doi_str_mv | 10.1109/DASC62030.2024.10748707 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10748707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10748707</ieee_id><sourcerecordid>10748707</sourcerecordid><originalsourceid>FETCH-ieee_primary_107487073</originalsourceid><addsrcrecordid>eNqFjsFKw0AURaeCYNH8geD7gcY3k0wms5TYogshoPvyUl_KlKRT3owL_94Kdu3qcjnnwlXqQWOpNfrH56f3rjFYYWnQ1KVGV7cO3UIV3vm2sljVvtF4pZZGW7tyBv2NKlI6IKLG1ja2XqqhlzjQEKaQcthBT0IzZxZYn_tMOUoCOn5CR1MYhHKIR3jjLGGXYIwCfUx8cX_ZKHGG15n2DBum_CWc7tT1SFPi4i9v1f1m_dG9rAIzb09ynsr39nK_-gf_AECYSbA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Probabilistic Parameter Estimators and Calibration Metrics for Pose Estimation from Image Features</title><source>IEEE Xplore All Conference Series</source><creator>Valentin, Romeo ; Katz, Sydney M. ; Lee, Joonghyun ; Walker, Don ; Sorgenfrei, Matthew ; Kochenderfer, Mykel J.</creator><creatorcontrib>Valentin, Romeo ; Katz, Sydney M. ; Lee, Joonghyun ; Walker, Don ; Sorgenfrei, Matthew ; Kochenderfer, Mykel J.</creatorcontrib><description>This paper addresses the challenge of probabilistic parameter estimation given measurement uncertainty in real-time. We provide a general formulation and apply this to pose estimation for an autonomous visual landing system. We present three probabilistic parameter estimators: a least-squares sampling approach, a linear approximation method, and a probabilistic programming estimator. To evaluate these estimators, we introduce novel closed-form expressions for measuring calibration and sharpness specifically for multivariate normal distributions. Our experimental study compares the three estimators under various noise conditions. We demonstrate that the linear approximation estimator can produce sharp and well-calibrated pose predictions significantly faster than the other methods but may yield overconfident predictions in certain scenarios. Additionally, we demonstrate that these estimators can be integrated with a Kalman filter for continuous pose estimation during a runway approach where we observe a 50% improvement in sharpness while maintaining marginal calibration. This work contributes to the integration of data-driven computer vision models into complex safety-critical aircraft systems and provides a foundation for developing rigorous certification guidelines for such systems.</description><identifier>EISSN: 2155-7209</identifier><identifier>EISBN: 9798350349610</identifier><identifier>DOI: 10.1109/DASC62030.2024.10748707</identifier><language>eng</language><publisher>IEEE</publisher><subject>Calibration ; Computer Vision ; Kalman filters ; Linear approximation ; Measurement uncertainty ; Noise ; Parameter estimation ; Pose estimation ; Probabilistic logic ; Probabilistic Programming ; Programming ; Sensors ; Uncertainty Quantification</subject><ispartof>IEEE/AIAA Digital Avionics Systems Conference, 2024, p.01-09</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10748707$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10748707$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Valentin, Romeo</creatorcontrib><creatorcontrib>Katz, Sydney M.</creatorcontrib><creatorcontrib>Lee, Joonghyun</creatorcontrib><creatorcontrib>Walker, Don</creatorcontrib><creatorcontrib>Sorgenfrei, Matthew</creatorcontrib><creatorcontrib>Kochenderfer, Mykel J.</creatorcontrib><title>Probabilistic Parameter Estimators and Calibration Metrics for Pose Estimation from Image Features</title><title>IEEE/AIAA Digital Avionics Systems Conference</title><addtitle>DASC</addtitle><description>This paper addresses the challenge of probabilistic parameter estimation given measurement uncertainty in real-time. We provide a general formulation and apply this to pose estimation for an autonomous visual landing system. We present three probabilistic parameter estimators: a least-squares sampling approach, a linear approximation method, and a probabilistic programming estimator. To evaluate these estimators, we introduce novel closed-form expressions for measuring calibration and sharpness specifically for multivariate normal distributions. Our experimental study compares the three estimators under various noise conditions. We demonstrate that the linear approximation estimator can produce sharp and well-calibrated pose predictions significantly faster than the other methods but may yield overconfident predictions in certain scenarios. Additionally, we demonstrate that these estimators can be integrated with a Kalman filter for continuous pose estimation during a runway approach where we observe a 50% improvement in sharpness while maintaining marginal calibration. This work contributes to the integration of data-driven computer vision models into complex safety-critical aircraft systems and provides a foundation for developing rigorous certification guidelines for such systems.</description><subject>Calibration</subject><subject>Computer Vision</subject><subject>Kalman filters</subject><subject>Linear approximation</subject><subject>Measurement uncertainty</subject><subject>Noise</subject><subject>Parameter estimation</subject><subject>Pose estimation</subject><subject>Probabilistic logic</subject><subject>Probabilistic Programming</subject><subject>Programming</subject><subject>Sensors</subject><subject>Uncertainty Quantification</subject><issn>2155-7209</issn><isbn>9798350349610</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFjsFKw0AURaeCYNH8geD7gcY3k0wms5TYogshoPvyUl_KlKRT3owL_94Kdu3qcjnnwlXqQWOpNfrH56f3rjFYYWnQ1KVGV7cO3UIV3vm2sljVvtF4pZZGW7tyBv2NKlI6IKLG1ja2XqqhlzjQEKaQcthBT0IzZxZYn_tMOUoCOn5CR1MYhHKIR3jjLGGXYIwCfUx8cX_ZKHGG15n2DBum_CWc7tT1SFPi4i9v1f1m_dG9rAIzb09ynsr39nK_-gf_AECYSbA</recordid><startdate>20240929</startdate><enddate>20240929</enddate><creator>Valentin, Romeo</creator><creator>Katz, Sydney M.</creator><creator>Lee, Joonghyun</creator><creator>Walker, Don</creator><creator>Sorgenfrei, Matthew</creator><creator>Kochenderfer, Mykel J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20240929</creationdate><title>Probabilistic Parameter Estimators and Calibration Metrics for Pose Estimation from Image Features</title><author>Valentin, Romeo ; Katz, Sydney M. ; Lee, Joonghyun ; Walker, Don ; Sorgenfrei, Matthew ; Kochenderfer, Mykel J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_107487073</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Calibration</topic><topic>Computer Vision</topic><topic>Kalman filters</topic><topic>Linear approximation</topic><topic>Measurement uncertainty</topic><topic>Noise</topic><topic>Parameter estimation</topic><topic>Pose estimation</topic><topic>Probabilistic logic</topic><topic>Probabilistic Programming</topic><topic>Programming</topic><topic>Sensors</topic><topic>Uncertainty Quantification</topic><toplevel>online_resources</toplevel><creatorcontrib>Valentin, Romeo</creatorcontrib><creatorcontrib>Katz, Sydney M.</creatorcontrib><creatorcontrib>Lee, Joonghyun</creatorcontrib><creatorcontrib>Walker, Don</creatorcontrib><creatorcontrib>Sorgenfrei, Matthew</creatorcontrib><creatorcontrib>Kochenderfer, Mykel J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Valentin, Romeo</au><au>Katz, Sydney M.</au><au>Lee, Joonghyun</au><au>Walker, Don</au><au>Sorgenfrei, Matthew</au><au>Kochenderfer, Mykel J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Probabilistic Parameter Estimators and Calibration Metrics for Pose Estimation from Image Features</atitle><btitle>IEEE/AIAA Digital Avionics Systems Conference</btitle><stitle>DASC</stitle><date>2024-09-29</date><risdate>2024</risdate><spage>01</spage><epage>09</epage><pages>01-09</pages><eissn>2155-7209</eissn><eisbn>9798350349610</eisbn><abstract>This paper addresses the challenge of probabilistic parameter estimation given measurement uncertainty in real-time. We provide a general formulation and apply this to pose estimation for an autonomous visual landing system. We present three probabilistic parameter estimators: a least-squares sampling approach, a linear approximation method, and a probabilistic programming estimator. To evaluate these estimators, we introduce novel closed-form expressions for measuring calibration and sharpness specifically for multivariate normal distributions. Our experimental study compares the three estimators under various noise conditions. We demonstrate that the linear approximation estimator can produce sharp and well-calibrated pose predictions significantly faster than the other methods but may yield overconfident predictions in certain scenarios. Additionally, we demonstrate that these estimators can be integrated with a Kalman filter for continuous pose estimation during a runway approach where we observe a 50% improvement in sharpness while maintaining marginal calibration. This work contributes to the integration of data-driven computer vision models into complex safety-critical aircraft systems and provides a foundation for developing rigorous certification guidelines for such systems.</abstract><pub>IEEE</pub><doi>10.1109/DASC62030.2024.10748707</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2155-7209 |
ispartof | IEEE/AIAA Digital Avionics Systems Conference, 2024, p.01-09 |
issn | 2155-7209 |
language | eng |
recordid | cdi_ieee_primary_10748707 |
source | IEEE Xplore All Conference Series |
subjects | Calibration Computer Vision Kalman filters Linear approximation Measurement uncertainty Noise Parameter estimation Pose estimation Probabilistic logic Probabilistic Programming Programming Sensors Uncertainty Quantification |
title | Probabilistic Parameter Estimators and Calibration Metrics for Pose Estimation from Image Features |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A05%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Probabilistic%20Parameter%20Estimators%20and%20Calibration%20Metrics%20for%20Pose%20Estimation%20from%20Image%20Features&rft.btitle=IEEE/AIAA%20Digital%20Avionics%20Systems%20Conference&rft.au=Valentin,%20Romeo&rft.date=2024-09-29&rft.spage=01&rft.epage=09&rft.pages=01-09&rft.eissn=2155-7209&rft_id=info:doi/10.1109/DASC62030.2024.10748707&rft.eisbn=9798350349610&rft_dat=%3Cieee_CHZPO%3E10748707%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_107487073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10748707&rfr_iscdi=true |