Loading…

High-Efficient Near-Field Channel Characteristics Analysis for Large-Scale MIMO Communication Systems

Large-scale multiple-input multiple-output (MIMO) holds great promise for the fifth-generation (5G) and future communication systems. For near-field scenarios, the spherical wavefront model is commonly utilized to depict the propagation characteristics of large-scale MIMO communication channels. How...

Full description

Saved in:
Bibliographic Details
Published in:IEEE internet of things journal 2025, p.1-1
Main Authors: Jiang, Hao, Shi, Wangqi, Chen, Xiao, Zhu, Qiuming, Chen, Zhen
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1
container_issue
container_start_page 1
container_title IEEE internet of things journal
container_volume
creator Jiang, Hao
Shi, Wangqi
Chen, Xiao
Zhu, Qiuming
Chen, Zhen
description Large-scale multiple-input multiple-output (MIMO) holds great promise for the fifth-generation (5G) and future communication systems. For near-field scenarios, the spherical wavefront model is commonly utilized to depict the propagation characteristics of large-scale MIMO communication channels. However, employing this modeling method necessitates the computation of angle and distance parameters for each antenna element, resulting in challenges regarding computational complexity. To solve this problem, we introduce a subarray decomposition scheme with the purpose of dividing the whole large-scale antenna array into several smaller subarrays. This scheme is implemented in the near-field channel modeling for large-scale MIMO communications between the base station (BS) and mobile receiver (MR). Essential channel propagation statistics, such as spatial cross-correlation functions (CCFs), temporal auto-correlation functions (ACFs), frequency correlation functions (CFs), and channel capacities, are derived and discussed. A comprehensive analysis is conducted to investigate the influences of the height of the BS, motion characteristics of the MR, and antenna configurations on the channel statistics. The proposed channel model criterions, such as the modeling precision and computational complexity, are also theoretically compared. Numerical results demonstrate the effectiveness of the presented communication model in obtaining a good tradeoff between modeling precision and computational complexity.
doi_str_mv 10.1109/JIOT.2024.3496434
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10750315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10750315</ieee_id><sourcerecordid>10_1109_JIOT_2024_3496434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c635-9bf2f8a8697251fad2aeedaa8a248c72821b828046011aea94b865fbca8e43783</originalsourceid><addsrcrecordid>eNpNkMtuwjAQRa2qlYooH1CpC_9AqF9xnCWKoICgLGAfTcwYXOVR2emCvy8RLFjdWdwzujqEvHM25Zzln-vV7jAVTKipVLlWUj2RkZAiS5TW4vnhfiWTGH8YY1cs5bkeEVz60zmZO-etx7an3wghWXisj7Q4Q9tiPWQA22Pwsfc20lkL9SX6SF0X6AbCCZO9hRrpdrXd0aJrmr_WW-h919L9JfbYxDfy4qCOOLnnmBwW80OxTDa7r1Ux2yRWyzTJKyecAaPzTKTcwVEA4hHAgFDGZsIIXhlhmNLX_YCQq8ro1FUWDCqZGTkm_PbWhi7GgK78Db6BcCk5KwdT5WCqHEyVd1NX5uPGeER86GcpkzyV_7T3ZVY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High-Efficient Near-Field Channel Characteristics Analysis for Large-Scale MIMO Communication Systems</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Jiang, Hao ; Shi, Wangqi ; Chen, Xiao ; Zhu, Qiuming ; Chen, Zhen</creator><creatorcontrib>Jiang, Hao ; Shi, Wangqi ; Chen, Xiao ; Zhu, Qiuming ; Chen, Zhen</creatorcontrib><description>Large-scale multiple-input multiple-output (MIMO) holds great promise for the fifth-generation (5G) and future communication systems. For near-field scenarios, the spherical wavefront model is commonly utilized to depict the propagation characteristics of large-scale MIMO communication channels. However, employing this modeling method necessitates the computation of angle and distance parameters for each antenna element, resulting in challenges regarding computational complexity. To solve this problem, we introduce a subarray decomposition scheme with the purpose of dividing the whole large-scale antenna array into several smaller subarrays. This scheme is implemented in the near-field channel modeling for large-scale MIMO communications between the base station (BS) and mobile receiver (MR). Essential channel propagation statistics, such as spatial cross-correlation functions (CCFs), temporal auto-correlation functions (ACFs), frequency correlation functions (CFs), and channel capacities, are derived and discussed. A comprehensive analysis is conducted to investigate the influences of the height of the BS, motion characteristics of the MR, and antenna configurations on the channel statistics. The proposed channel model criterions, such as the modeling precision and computational complexity, are also theoretically compared. Numerical results demonstrate the effectiveness of the presented communication model in obtaining a good tradeoff between modeling precision and computational complexity.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2024.3496434</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>IEEE</publisher><subject>Antenna arrays ; Antennas ; channel modeling complexity ; Channel models ; Computational complexity ; Computational modeling ; Internet of Things ; large-scale MIMO ; MIMO communication ; Near-field communication ; Receiving antennas ; subarray decomposition ; Vectors ; Wireless communication</subject><ispartof>IEEE internet of things journal, 2025, p.1-1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8018-9103 ; 0000-0002-6757-4231 ; 0000-0001-5405-8695 ; 0000-0002-4995-5970</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10750315$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,4010,27897,27898,27899,54768</link.rule.ids></links><search><creatorcontrib>Jiang, Hao</creatorcontrib><creatorcontrib>Shi, Wangqi</creatorcontrib><creatorcontrib>Chen, Xiao</creatorcontrib><creatorcontrib>Zhu, Qiuming</creatorcontrib><creatorcontrib>Chen, Zhen</creatorcontrib><title>High-Efficient Near-Field Channel Characteristics Analysis for Large-Scale MIMO Communication Systems</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Large-scale multiple-input multiple-output (MIMO) holds great promise for the fifth-generation (5G) and future communication systems. For near-field scenarios, the spherical wavefront model is commonly utilized to depict the propagation characteristics of large-scale MIMO communication channels. However, employing this modeling method necessitates the computation of angle and distance parameters for each antenna element, resulting in challenges regarding computational complexity. To solve this problem, we introduce a subarray decomposition scheme with the purpose of dividing the whole large-scale antenna array into several smaller subarrays. This scheme is implemented in the near-field channel modeling for large-scale MIMO communications between the base station (BS) and mobile receiver (MR). Essential channel propagation statistics, such as spatial cross-correlation functions (CCFs), temporal auto-correlation functions (ACFs), frequency correlation functions (CFs), and channel capacities, are derived and discussed. A comprehensive analysis is conducted to investigate the influences of the height of the BS, motion characteristics of the MR, and antenna configurations on the channel statistics. The proposed channel model criterions, such as the modeling precision and computational complexity, are also theoretically compared. Numerical results demonstrate the effectiveness of the presented communication model in obtaining a good tradeoff between modeling precision and computational complexity.</description><subject>Antenna arrays</subject><subject>Antennas</subject><subject>channel modeling complexity</subject><subject>Channel models</subject><subject>Computational complexity</subject><subject>Computational modeling</subject><subject>Internet of Things</subject><subject>large-scale MIMO</subject><subject>MIMO communication</subject><subject>Near-field communication</subject><subject>Receiving antennas</subject><subject>subarray decomposition</subject><subject>Vectors</subject><subject>Wireless communication</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpNkMtuwjAQRa2qlYooH1CpC_9AqF9xnCWKoICgLGAfTcwYXOVR2emCvy8RLFjdWdwzujqEvHM25Zzln-vV7jAVTKipVLlWUj2RkZAiS5TW4vnhfiWTGH8YY1cs5bkeEVz60zmZO-etx7an3wghWXisj7Q4Q9tiPWQA22Pwsfc20lkL9SX6SF0X6AbCCZO9hRrpdrXd0aJrmr_WW-h919L9JfbYxDfy4qCOOLnnmBwW80OxTDa7r1Ux2yRWyzTJKyecAaPzTKTcwVEA4hHAgFDGZsIIXhlhmNLX_YCQq8ro1FUWDCqZGTkm_PbWhi7GgK78Db6BcCk5KwdT5WCqHEyVd1NX5uPGeER86GcpkzyV_7T3ZVY</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Jiang, Hao</creator><creator>Shi, Wangqi</creator><creator>Chen, Xiao</creator><creator>Zhu, Qiuming</creator><creator>Chen, Zhen</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8018-9103</orcidid><orcidid>https://orcid.org/0000-0002-6757-4231</orcidid><orcidid>https://orcid.org/0000-0001-5405-8695</orcidid><orcidid>https://orcid.org/0000-0002-4995-5970</orcidid></search><sort><creationdate>2025</creationdate><title>High-Efficient Near-Field Channel Characteristics Analysis for Large-Scale MIMO Communication Systems</title><author>Jiang, Hao ; Shi, Wangqi ; Chen, Xiao ; Zhu, Qiuming ; Chen, Zhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c635-9bf2f8a8697251fad2aeedaa8a248c72821b828046011aea94b865fbca8e43783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Antenna arrays</topic><topic>Antennas</topic><topic>channel modeling complexity</topic><topic>Channel models</topic><topic>Computational complexity</topic><topic>Computational modeling</topic><topic>Internet of Things</topic><topic>large-scale MIMO</topic><topic>MIMO communication</topic><topic>Near-field communication</topic><topic>Receiving antennas</topic><topic>subarray decomposition</topic><topic>Vectors</topic><topic>Wireless communication</topic><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Hao</creatorcontrib><creatorcontrib>Shi, Wangqi</creatorcontrib><creatorcontrib>Chen, Xiao</creatorcontrib><creatorcontrib>Zhu, Qiuming</creatorcontrib><creatorcontrib>Chen, Zhen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Hao</au><au>Shi, Wangqi</au><au>Chen, Xiao</au><au>Zhu, Qiuming</au><au>Chen, Zhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Efficient Near-Field Channel Characteristics Analysis for Large-Scale MIMO Communication Systems</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2025</date><risdate>2025</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Large-scale multiple-input multiple-output (MIMO) holds great promise for the fifth-generation (5G) and future communication systems. For near-field scenarios, the spherical wavefront model is commonly utilized to depict the propagation characteristics of large-scale MIMO communication channels. However, employing this modeling method necessitates the computation of angle and distance parameters for each antenna element, resulting in challenges regarding computational complexity. To solve this problem, we introduce a subarray decomposition scheme with the purpose of dividing the whole large-scale antenna array into several smaller subarrays. This scheme is implemented in the near-field channel modeling for large-scale MIMO communications between the base station (BS) and mobile receiver (MR). Essential channel propagation statistics, such as spatial cross-correlation functions (CCFs), temporal auto-correlation functions (ACFs), frequency correlation functions (CFs), and channel capacities, are derived and discussed. A comprehensive analysis is conducted to investigate the influences of the height of the BS, motion characteristics of the MR, and antenna configurations on the channel statistics. The proposed channel model criterions, such as the modeling precision and computational complexity, are also theoretically compared. Numerical results demonstrate the effectiveness of the presented communication model in obtaining a good tradeoff between modeling precision and computational complexity.</abstract><pub>IEEE</pub><doi>10.1109/JIOT.2024.3496434</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8018-9103</orcidid><orcidid>https://orcid.org/0000-0002-6757-4231</orcidid><orcidid>https://orcid.org/0000-0001-5405-8695</orcidid><orcidid>https://orcid.org/0000-0002-4995-5970</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2025, p.1-1
issn 2327-4662
2327-4662
language eng
recordid cdi_ieee_primary_10750315
source IEEE Electronic Library (IEL) Journals
subjects Antenna arrays
Antennas
channel modeling complexity
Channel models
Computational complexity
Computational modeling
Internet of Things
large-scale MIMO
MIMO communication
Near-field communication
Receiving antennas
subarray decomposition
Vectors
Wireless communication
title High-Efficient Near-Field Channel Characteristics Analysis for Large-Scale MIMO Communication Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-25T18%3A53%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Efficient%20Near-Field%20Channel%20Characteristics%20Analysis%20for%20Large-Scale%20MIMO%20Communication%20Systems&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Jiang,%20Hao&rft.date=2025&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2024.3496434&rft_dat=%3Ccrossref_ieee_%3E10_1109_JIOT_2024_3496434%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c635-9bf2f8a8697251fad2aeedaa8a248c72821b828046011aea94b865fbca8e43783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10750315&rfr_iscdi=true