Loading…
Explainable Reinforcement Learning(XRL)-Based Decap Placement Optimization for High Bandwidth Memory (HBM)
In this paper, for the first time, we propose an explainable reinforcement learning (XRL)-based decap placement optimization method for high bandwidth memory (HBM) considering power integrity (PI). The proposed XRL-based method enhances explainability by transforming the sum of various types of rewa...
Saved in:
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Kim, Keunwoo Park, Hyunwook Son, Keeyoung Choi, Seonguk Shin, Taein Lee, Junghyun Yoon, Jiwon An, Hyunjun Kim, Haeyeon Choi, Wooshin Choi, Jung-Hwan Kim, Joungho |
description | In this paper, for the first time, we propose an explainable reinforcement learning (XRL)-based decap placement optimization method for high bandwidth memory (HBM) considering power integrity (PI). The proposed XRL-based method enhances explainability by transforming the sum of various types of rewards into a vector sum operation for the trained model. A CNN-based network was used for training, with each reward considered from a multi-objective RL perspective. To verify the proposed method, we applied it to solve the problem of placing decaps at VDDQ domain of HBM3 module. In this paper, rewards were set as the suppression of self-impedance and transfer-impedance at each probing port. The proposed method achieved improvements of 2.8% compared to usage of general scalar sum reward. Ultimately, the vector differences in the Q-value for different actions provided grounds for action taken and allowed for the evaluation of whether the model was well-trained. |
doi_str_mv | 10.1109/EPEPS61853.2024.10754045 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10754045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10754045</ieee_id><sourcerecordid>10754045</sourcerecordid><originalsourceid>FETCH-ieee_primary_107540453</originalsourceid><addsrcrecordid>eNqFj7FOwzAURQ0SEhXNHzC8sR0S_OI4ddZAUIZWRC0DW_VoXltXiRM5kaB8PR3KzHSHc85whQCUEaLMnoqqqDYpGq2iWMZJhHKhE5noGxFki8woLZXGWOGtmMSY6jBB1PciGIaTlFKhMSZLJ-JUfPcNWUefDcOardt3fsctuxGWTN5Zd5h9rJfzMKeBa3jhHfVQNXR13vrRtvaHRts5uKRQ2sMRcnL1l63HI6y47fwZZmW-mk_F3Z6agYPrPojH1-L9uQwtM297b1vy5-3fDfUP_gV4fktM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Explainable Reinforcement Learning(XRL)-Based Decap Placement Optimization for High Bandwidth Memory (HBM)</title><source>IEEE Xplore All Conference Series</source><creator>Kim, Keunwoo ; Park, Hyunwook ; Son, Keeyoung ; Choi, Seonguk ; Shin, Taein ; Lee, Junghyun ; Yoon, Jiwon ; An, Hyunjun ; Kim, Haeyeon ; Choi, Wooshin ; Choi, Jung-Hwan ; Kim, Joungho</creator><creatorcontrib>Kim, Keunwoo ; Park, Hyunwook ; Son, Keeyoung ; Choi, Seonguk ; Shin, Taein ; Lee, Junghyun ; Yoon, Jiwon ; An, Hyunjun ; Kim, Haeyeon ; Choi, Wooshin ; Choi, Jung-Hwan ; Kim, Joungho</creatorcontrib><description>In this paper, for the first time, we propose an explainable reinforcement learning (XRL)-based decap placement optimization method for high bandwidth memory (HBM) considering power integrity (PI). The proposed XRL-based method enhances explainability by transforming the sum of various types of rewards into a vector sum operation for the trained model. A CNN-based network was used for training, with each reward considered from a multi-objective RL perspective. To verify the proposed method, we applied it to solve the problem of placing decaps at VDDQ domain of HBM3 module. In this paper, rewards were set as the suppression of self-impedance and transfer-impedance at each probing port. The proposed method achieved improvements of 2.8% compared to usage of general scalar sum reward. Ultimately, the vector differences in the Q-value for different actions provided grounds for action taken and allowed for the evaluation of whether the model was well-trained.</description><identifier>EISSN: 2165-4115</identifier><identifier>EISBN: 9798350351231</identifier><identifier>DOI: 10.1109/EPEPS61853.2024.10754045</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bandwidth ; Electronics packaging ; explainable reinforcement learning (XRL) ; high-bandwidth memory (HBM) ; Optimization methods ; Power integrity (PI) ; Reinforcement learning ; Training ; Vectors</subject><ispartof>IEEE ... Conference on Electrical Performance of Electronic Packaging and Systems (Print), 2024, p.1-3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10754045$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,27906,54536,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10754045$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kim, Keunwoo</creatorcontrib><creatorcontrib>Park, Hyunwook</creatorcontrib><creatorcontrib>Son, Keeyoung</creatorcontrib><creatorcontrib>Choi, Seonguk</creatorcontrib><creatorcontrib>Shin, Taein</creatorcontrib><creatorcontrib>Lee, Junghyun</creatorcontrib><creatorcontrib>Yoon, Jiwon</creatorcontrib><creatorcontrib>An, Hyunjun</creatorcontrib><creatorcontrib>Kim, Haeyeon</creatorcontrib><creatorcontrib>Choi, Wooshin</creatorcontrib><creatorcontrib>Choi, Jung-Hwan</creatorcontrib><creatorcontrib>Kim, Joungho</creatorcontrib><title>Explainable Reinforcement Learning(XRL)-Based Decap Placement Optimization for High Bandwidth Memory (HBM)</title><title>IEEE ... Conference on Electrical Performance of Electronic Packaging and Systems (Print)</title><addtitle>EPEPS</addtitle><description>In this paper, for the first time, we propose an explainable reinforcement learning (XRL)-based decap placement optimization method for high bandwidth memory (HBM) considering power integrity (PI). The proposed XRL-based method enhances explainability by transforming the sum of various types of rewards into a vector sum operation for the trained model. A CNN-based network was used for training, with each reward considered from a multi-objective RL perspective. To verify the proposed method, we applied it to solve the problem of placing decaps at VDDQ domain of HBM3 module. In this paper, rewards were set as the suppression of self-impedance and transfer-impedance at each probing port. The proposed method achieved improvements of 2.8% compared to usage of general scalar sum reward. Ultimately, the vector differences in the Q-value for different actions provided grounds for action taken and allowed for the evaluation of whether the model was well-trained.</description><subject>Bandwidth</subject><subject>Electronics packaging</subject><subject>explainable reinforcement learning (XRL)</subject><subject>high-bandwidth memory (HBM)</subject><subject>Optimization methods</subject><subject>Power integrity (PI)</subject><subject>Reinforcement learning</subject><subject>Training</subject><subject>Vectors</subject><issn>2165-4115</issn><isbn>9798350351231</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFj7FOwzAURQ0SEhXNHzC8sR0S_OI4ddZAUIZWRC0DW_VoXltXiRM5kaB8PR3KzHSHc85whQCUEaLMnoqqqDYpGq2iWMZJhHKhE5noGxFki8woLZXGWOGtmMSY6jBB1PciGIaTlFKhMSZLJ-JUfPcNWUefDcOardt3fsctuxGWTN5Zd5h9rJfzMKeBa3jhHfVQNXR13vrRtvaHRts5uKRQ2sMRcnL1l63HI6y47fwZZmW-mk_F3Z6agYPrPojH1-L9uQwtM297b1vy5-3fDfUP_gV4fktM</recordid><startdate>20241006</startdate><enddate>20241006</enddate><creator>Kim, Keunwoo</creator><creator>Park, Hyunwook</creator><creator>Son, Keeyoung</creator><creator>Choi, Seonguk</creator><creator>Shin, Taein</creator><creator>Lee, Junghyun</creator><creator>Yoon, Jiwon</creator><creator>An, Hyunjun</creator><creator>Kim, Haeyeon</creator><creator>Choi, Wooshin</creator><creator>Choi, Jung-Hwan</creator><creator>Kim, Joungho</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20241006</creationdate><title>Explainable Reinforcement Learning(XRL)-Based Decap Placement Optimization for High Bandwidth Memory (HBM)</title><author>Kim, Keunwoo ; Park, Hyunwook ; Son, Keeyoung ; Choi, Seonguk ; Shin, Taein ; Lee, Junghyun ; Yoon, Jiwon ; An, Hyunjun ; Kim, Haeyeon ; Choi, Wooshin ; Choi, Jung-Hwan ; Kim, Joungho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_107540453</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bandwidth</topic><topic>Electronics packaging</topic><topic>explainable reinforcement learning (XRL)</topic><topic>high-bandwidth memory (HBM)</topic><topic>Optimization methods</topic><topic>Power integrity (PI)</topic><topic>Reinforcement learning</topic><topic>Training</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Kim, Keunwoo</creatorcontrib><creatorcontrib>Park, Hyunwook</creatorcontrib><creatorcontrib>Son, Keeyoung</creatorcontrib><creatorcontrib>Choi, Seonguk</creatorcontrib><creatorcontrib>Shin, Taein</creatorcontrib><creatorcontrib>Lee, Junghyun</creatorcontrib><creatorcontrib>Yoon, Jiwon</creatorcontrib><creatorcontrib>An, Hyunjun</creatorcontrib><creatorcontrib>Kim, Haeyeon</creatorcontrib><creatorcontrib>Choi, Wooshin</creatorcontrib><creatorcontrib>Choi, Jung-Hwan</creatorcontrib><creatorcontrib>Kim, Joungho</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kim, Keunwoo</au><au>Park, Hyunwook</au><au>Son, Keeyoung</au><au>Choi, Seonguk</au><au>Shin, Taein</au><au>Lee, Junghyun</au><au>Yoon, Jiwon</au><au>An, Hyunjun</au><au>Kim, Haeyeon</au><au>Choi, Wooshin</au><au>Choi, Jung-Hwan</au><au>Kim, Joungho</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Explainable Reinforcement Learning(XRL)-Based Decap Placement Optimization for High Bandwidth Memory (HBM)</atitle><btitle>IEEE ... Conference on Electrical Performance of Electronic Packaging and Systems (Print)</btitle><stitle>EPEPS</stitle><date>2024-10-06</date><risdate>2024</risdate><spage>1</spage><epage>3</epage><pages>1-3</pages><eissn>2165-4115</eissn><eisbn>9798350351231</eisbn><abstract>In this paper, for the first time, we propose an explainable reinforcement learning (XRL)-based decap placement optimization method for high bandwidth memory (HBM) considering power integrity (PI). The proposed XRL-based method enhances explainability by transforming the sum of various types of rewards into a vector sum operation for the trained model. A CNN-based network was used for training, with each reward considered from a multi-objective RL perspective. To verify the proposed method, we applied it to solve the problem of placing decaps at VDDQ domain of HBM3 module. In this paper, rewards were set as the suppression of self-impedance and transfer-impedance at each probing port. The proposed method achieved improvements of 2.8% compared to usage of general scalar sum reward. Ultimately, the vector differences in the Q-value for different actions provided grounds for action taken and allowed for the evaluation of whether the model was well-trained.</abstract><pub>IEEE</pub><doi>10.1109/EPEPS61853.2024.10754045</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2165-4115 |
ispartof | IEEE ... Conference on Electrical Performance of Electronic Packaging and Systems (Print), 2024, p.1-3 |
issn | 2165-4115 |
language | eng |
recordid | cdi_ieee_primary_10754045 |
source | IEEE Xplore All Conference Series |
subjects | Bandwidth Electronics packaging explainable reinforcement learning (XRL) high-bandwidth memory (HBM) Optimization methods Power integrity (PI) Reinforcement learning Training Vectors |
title | Explainable Reinforcement Learning(XRL)-Based Decap Placement Optimization for High Bandwidth Memory (HBM) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A27%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Explainable%20Reinforcement%20Learning(XRL)-Based%20Decap%20Placement%20Optimization%20for%20High%20Bandwidth%20Memory%20(HBM)&rft.btitle=IEEE%20...%20Conference%20on%20Electrical%20Performance%20of%20Electronic%20Packaging%20and%20Systems%20(Print)&rft.au=Kim,%20Keunwoo&rft.date=2024-10-06&rft.spage=1&rft.epage=3&rft.pages=1-3&rft.eissn=2165-4115&rft_id=info:doi/10.1109/EPEPS61853.2024.10754045&rft.eisbn=9798350351231&rft_dat=%3Cieee_CHZPO%3E10754045%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_107540453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10754045&rfr_iscdi=true |