Loading…

Survey on Advancements in Machine Learning for Natural Language Processing

This paper explores significant advances in machine learning (ML) in the field of natural language processing (NLP), with an emphasis on transformative innovations such as transformer models and large language models (LLMs). By facilitating the ability of machines to understand and generate human la...

Full description

Saved in:
Bibliographic Details
Main Authors: Hamed, Osama, Amer, Mohammed, Bejaoui, Tarek
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Hamed, Osama
Amer, Mohammed
Bejaoui, Tarek
description This paper explores significant advances in machine learning (ML) in the field of natural language processing (NLP), with an emphasis on transformative innovations such as transformer models and large language models (LLMs). By facilitating the ability of machines to understand and generate human language, these technologies have revolutionized applications such as automated translation and conversational agents. In addition, the paper addresses ethical considerations, including data bias and model interpretability, that pose challenges to the practical use of ML-driven NLP systems. The discussion highlights both breakthroughs and obstacles in this evolving field, and provides insights into future research directions aimed at refining the capabilities and responsible use of NLP technologies.
doi_str_mv 10.1109/ISNCC62547.2024.10759035
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10759035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10759035</ieee_id><sourcerecordid>10759035</sourcerecordid><originalsourceid>FETCH-ieee_primary_107590353</originalsourceid><addsrcrecordid>eNqFzsGKwjAQgOG4IChr38DDvIB1krSNOUpRdHFlQe8y1LFGNJXECr69HvS8p__wXX4hQGIqJdrxcrMuy0LlmUkVqiyVaHKLOu-IxBo70TnqIrMSv0RfmWIyQpthTyQxnhBRS2OMVH3xs2nDnR_QeJju7-QrvrC_RXAefqk6Os-wYgre-RoOTYA13dpAZ1iRr1uqGf5CU3GMLx-I7oHOkZN3v8VwPtuWi5Fj5t01uAuFx-6zqf_hJyzXQLw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Survey on Advancements in Machine Learning for Natural Language Processing</title><source>IEEE Xplore All Conference Series</source><creator>Hamed, Osama ; Amer, Mohammed ; Bejaoui, Tarek</creator><creatorcontrib>Hamed, Osama ; Amer, Mohammed ; Bejaoui, Tarek</creatorcontrib><description>This paper explores significant advances in machine learning (ML) in the field of natural language processing (NLP), with an emphasis on transformative innovations such as transformer models and large language models (LLMs). By facilitating the ability of machines to understand and generate human language, these technologies have revolutionized applications such as automated translation and conversational agents. In addition, the paper addresses ethical considerations, including data bias and model interpretability, that pose challenges to the practical use of ML-driven NLP systems. The discussion highlights both breakthroughs and obstacles in this evolving field, and provides insights into future research directions aimed at refining the capabilities and responsible use of NLP technologies.</description><identifier>EISSN: 2768-0940</identifier><identifier>EISBN: 9798350364910</identifier><identifier>DOI: 10.1109/ISNCC62547.2024.10759035</identifier><language>eng</language><publisher>IEEE</publisher><subject>Ethics ; Large Language Models ; Machine Learning ; Natural language processing ; Optimization ; Privacy ; Refining ; Reinforcement learning ; Surveys ; Technological innovation ; Trajectory ; Transfer Learning ; Transformers</subject><ispartof>International Symposium on Networks, Computers and Communications, 2024, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10759035$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27904,54533,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10759035$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hamed, Osama</creatorcontrib><creatorcontrib>Amer, Mohammed</creatorcontrib><creatorcontrib>Bejaoui, Tarek</creatorcontrib><title>Survey on Advancements in Machine Learning for Natural Language Processing</title><title>International Symposium on Networks, Computers and Communications</title><addtitle>ISNCC</addtitle><description>This paper explores significant advances in machine learning (ML) in the field of natural language processing (NLP), with an emphasis on transformative innovations such as transformer models and large language models (LLMs). By facilitating the ability of machines to understand and generate human language, these technologies have revolutionized applications such as automated translation and conversational agents. In addition, the paper addresses ethical considerations, including data bias and model interpretability, that pose challenges to the practical use of ML-driven NLP systems. The discussion highlights both breakthroughs and obstacles in this evolving field, and provides insights into future research directions aimed at refining the capabilities and responsible use of NLP technologies.</description><subject>Ethics</subject><subject>Large Language Models</subject><subject>Machine Learning</subject><subject>Natural language processing</subject><subject>Optimization</subject><subject>Privacy</subject><subject>Refining</subject><subject>Reinforcement learning</subject><subject>Surveys</subject><subject>Technological innovation</subject><subject>Trajectory</subject><subject>Transfer Learning</subject><subject>Transformers</subject><issn>2768-0940</issn><isbn>9798350364910</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFzsGKwjAQgOG4IChr38DDvIB1krSNOUpRdHFlQe8y1LFGNJXECr69HvS8p__wXX4hQGIqJdrxcrMuy0LlmUkVqiyVaHKLOu-IxBo70TnqIrMSv0RfmWIyQpthTyQxnhBRS2OMVH3xs2nDnR_QeJju7-QrvrC_RXAefqk6Os-wYgre-RoOTYA13dpAZ1iRr1uqGf5CU3GMLx-I7oHOkZN3v8VwPtuWi5Fj5t01uAuFx-6zqf_hJyzXQLw</recordid><startdate>20241022</startdate><enddate>20241022</enddate><creator>Hamed, Osama</creator><creator>Amer, Mohammed</creator><creator>Bejaoui, Tarek</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20241022</creationdate><title>Survey on Advancements in Machine Learning for Natural Language Processing</title><author>Hamed, Osama ; Amer, Mohammed ; Bejaoui, Tarek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_107590353</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ethics</topic><topic>Large Language Models</topic><topic>Machine Learning</topic><topic>Natural language processing</topic><topic>Optimization</topic><topic>Privacy</topic><topic>Refining</topic><topic>Reinforcement learning</topic><topic>Surveys</topic><topic>Technological innovation</topic><topic>Trajectory</topic><topic>Transfer Learning</topic><topic>Transformers</topic><toplevel>online_resources</toplevel><creatorcontrib>Hamed, Osama</creatorcontrib><creatorcontrib>Amer, Mohammed</creatorcontrib><creatorcontrib>Bejaoui, Tarek</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hamed, Osama</au><au>Amer, Mohammed</au><au>Bejaoui, Tarek</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Survey on Advancements in Machine Learning for Natural Language Processing</atitle><btitle>International Symposium on Networks, Computers and Communications</btitle><stitle>ISNCC</stitle><date>2024-10-22</date><risdate>2024</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2768-0940</eissn><eisbn>9798350364910</eisbn><abstract>This paper explores significant advances in machine learning (ML) in the field of natural language processing (NLP), with an emphasis on transformative innovations such as transformer models and large language models (LLMs). By facilitating the ability of machines to understand and generate human language, these technologies have revolutionized applications such as automated translation and conversational agents. In addition, the paper addresses ethical considerations, including data bias and model interpretability, that pose challenges to the practical use of ML-driven NLP systems. The discussion highlights both breakthroughs and obstacles in this evolving field, and provides insights into future research directions aimed at refining the capabilities and responsible use of NLP technologies.</abstract><pub>IEEE</pub><doi>10.1109/ISNCC62547.2024.10759035</doi></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2768-0940
ispartof International Symposium on Networks, Computers and Communications, 2024, p.1-6
issn 2768-0940
language eng
recordid cdi_ieee_primary_10759035
source IEEE Xplore All Conference Series
subjects Ethics
Large Language Models
Machine Learning
Natural language processing
Optimization
Privacy
Refining
Reinforcement learning
Surveys
Technological innovation
Trajectory
Transfer Learning
Transformers
title Survey on Advancements in Machine Learning for Natural Language Processing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A15%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Survey%20on%20Advancements%20in%20Machine%20Learning%20for%20Natural%20Language%20Processing&rft.btitle=International%20Symposium%20on%20Networks,%20Computers%20and%20Communications&rft.au=Hamed,%20Osama&rft.date=2024-10-22&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2768-0940&rft_id=info:doi/10.1109/ISNCC62547.2024.10759035&rft.eisbn=9798350364910&rft_dat=%3Cieee_CHZPO%3E10759035%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_107590353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10759035&rfr_iscdi=true