Loading…
G3R: Generating Rich and Fine-Grained Mmwave Radar Data From 2D Videos for Generalized Gesture Recognition
Millimeter wave radar is gaining traction recently as a promising modality for enabling pervasive and privacy-preserving gesture recognition. However, the lack of rich and fine-grained radar datasets hinders progress in developing generalized deep learning models for gesture recognition across vario...
Saved in:
Published in: | IEEE transactions on mobile computing 2024-11, p.1-18 |
---|---|
Main Authors: | , , , , , |
Format: | Magazinearticle |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 18 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on mobile computing |
container_volume | |
creator | Deng, Kaikai Zhao, Dong Zheng, Wenxin Ling, Yue Yin, Kangwen Ma, Huadong |
description | Millimeter wave radar is gaining traction recently as a promising modality for enabling pervasive and privacy-preserving gesture recognition. However, the lack of rich and fine-grained radar datasets hinders progress in developing generalized deep learning models for gesture recognition across various user postures (e.g., standing, sitting), positions, and scenes. To remedy this, we resort to designing a software pipeline that exploits wealthy 2D videos to generate realistic radar data, but it needs to address the challenge of simulating diversified and fine-grained reflection properties of user gestures. To this end, we design G 3 R with three key components: (i) a gesture reflection point generator expands the arm's skeleton points to form human reflection points; (ii) a signal simulation model simulates the multipath reflection and attenuation of radar signals to output the human intensity map; (iii) an encoder-decoder model combines a sampling module and a fitting module to address the differences in number and distribution of points between generated and real-world radar data for generating realistic radar data. We implement and evaluate G 3 R using 2D videos from public data sources and self-collected real-world radar data, demonstrating its superiority over other state-of-the-art approaches for gesture recognition. |
doi_str_mv | 10.1109/TMC.2024.3502668 |
format | magazinearticle |
fullrecord | <record><control><sourceid>ieee</sourceid><recordid>TN_cdi_ieee_primary_10759276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10759276</ieee_id><sourcerecordid>10759276</sourcerecordid><originalsourceid>FETCH-ieee_primary_107592763</originalsourceid><addsrcrecordid>eNqFjLtug0AQAK-IJTt2-hQp9gcg9zBg0pqAGxpkpbVWZu0sgrvojiSyvz4U9KmmGM0I8axkrJTMX4_1PtZSb2OTSJ2muwexUolJI6WNWYrHEDop1S7Ps5XoKtO8QUWWPI5sr9Dw-RPQtlCypajyOKGFevjFH4IGW_RQ4IhQejeALuCDW3IBLs7Pl57vU1BRGL_9VNDZXS2P7OxGLC7YB3qauRYv5ftxf4iYiE5fngf0t5OSWZLrLDX_6D-bV0WM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype></control><display><type>magazinearticle</type><title>G3R: Generating Rich and Fine-Grained Mmwave Radar Data From 2D Videos for Generalized Gesture Recognition</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Deng, Kaikai ; Zhao, Dong ; Zheng, Wenxin ; Ling, Yue ; Yin, Kangwen ; Ma, Huadong</creator><creatorcontrib>Deng, Kaikai ; Zhao, Dong ; Zheng, Wenxin ; Ling, Yue ; Yin, Kangwen ; Ma, Huadong</creatorcontrib><description>Millimeter wave radar is gaining traction recently as a promising modality for enabling pervasive and privacy-preserving gesture recognition. However, the lack of rich and fine-grained radar datasets hinders progress in developing generalized deep learning models for gesture recognition across various user postures (e.g., standing, sitting), positions, and scenes. To remedy this, we resort to designing a software pipeline that exploits wealthy 2D videos to generate realistic radar data, but it needs to address the challenge of simulating diversified and fine-grained reflection properties of user gestures. To this end, we design G 3 R with three key components: (i) a gesture reflection point generator expands the arm's skeleton points to form human reflection points; (ii) a signal simulation model simulates the multipath reflection and attenuation of radar signals to output the human intensity map; (iii) an encoder-decoder model combines a sampling module and a fitting module to address the differences in number and distribution of points between generated and real-world radar data for generating realistic radar data. We implement and evaluate G 3 R using 2D videos from public data sources and self-collected real-world radar data, demonstrating its superiority over other state-of-the-art approaches for gesture recognition.</description><identifier>ISSN: 1536-1233</identifier><identifier>DOI: 10.1109/TMC.2024.3502668</identifier><identifier>CODEN: ITMCCJ</identifier><language>eng</language><publisher>IEEE</publisher><subject>2D videos ; Accuracy ; cross domain translation ; Data models ; generalized sensing ; Gesture recognition ; Radar ; Radar cross-sections ; Radar signal processing ; Skeleton ; synthetic radar data ; Testing ; Training ; Videos</subject><ispartof>IEEE transactions on mobile computing, 2024-11, p.1-18</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7199-5047 ; 0000-0003-1123-6978 ; 0000-0001-8492-1699 ; 0009-0000-4531-0609 ; 0000-0002-7337-9168 ; 0009-0006-8656-5134</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10759276$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>780,784,27925,54796</link.rule.ids></links><search><creatorcontrib>Deng, Kaikai</creatorcontrib><creatorcontrib>Zhao, Dong</creatorcontrib><creatorcontrib>Zheng, Wenxin</creatorcontrib><creatorcontrib>Ling, Yue</creatorcontrib><creatorcontrib>Yin, Kangwen</creatorcontrib><creatorcontrib>Ma, Huadong</creatorcontrib><title>G3R: Generating Rich and Fine-Grained Mmwave Radar Data From 2D Videos for Generalized Gesture Recognition</title><title>IEEE transactions on mobile computing</title><addtitle>TMC</addtitle><description>Millimeter wave radar is gaining traction recently as a promising modality for enabling pervasive and privacy-preserving gesture recognition. However, the lack of rich and fine-grained radar datasets hinders progress in developing generalized deep learning models for gesture recognition across various user postures (e.g., standing, sitting), positions, and scenes. To remedy this, we resort to designing a software pipeline that exploits wealthy 2D videos to generate realistic radar data, but it needs to address the challenge of simulating diversified and fine-grained reflection properties of user gestures. To this end, we design G 3 R with three key components: (i) a gesture reflection point generator expands the arm's skeleton points to form human reflection points; (ii) a signal simulation model simulates the multipath reflection and attenuation of radar signals to output the human intensity map; (iii) an encoder-decoder model combines a sampling module and a fitting module to address the differences in number and distribution of points between generated and real-world radar data for generating realistic radar data. We implement and evaluate G 3 R using 2D videos from public data sources and self-collected real-world radar data, demonstrating its superiority over other state-of-the-art approaches for gesture recognition.</description><subject>2D videos</subject><subject>Accuracy</subject><subject>cross domain translation</subject><subject>Data models</subject><subject>generalized sensing</subject><subject>Gesture recognition</subject><subject>Radar</subject><subject>Radar cross-sections</subject><subject>Radar signal processing</subject><subject>Skeleton</subject><subject>synthetic radar data</subject><subject>Testing</subject><subject>Training</subject><subject>Videos</subject><issn>1536-1233</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2024</creationdate><recordtype>magazinearticle</recordtype><recordid>eNqFjLtug0AQAK-IJTt2-hQp9gcg9zBg0pqAGxpkpbVWZu0sgrvojiSyvz4U9KmmGM0I8axkrJTMX4_1PtZSb2OTSJ2muwexUolJI6WNWYrHEDop1S7Ps5XoKtO8QUWWPI5sr9Dw-RPQtlCypajyOKGFevjFH4IGW_RQ4IhQejeALuCDW3IBLs7Pl57vU1BRGL_9VNDZXS2P7OxGLC7YB3qauRYv5ftxf4iYiE5fngf0t5OSWZLrLDX_6D-bV0WM</recordid><startdate>20241119</startdate><enddate>20241119</enddate><creator>Deng, Kaikai</creator><creator>Zhao, Dong</creator><creator>Zheng, Wenxin</creator><creator>Ling, Yue</creator><creator>Yin, Kangwen</creator><creator>Ma, Huadong</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0002-7199-5047</orcidid><orcidid>https://orcid.org/0000-0003-1123-6978</orcidid><orcidid>https://orcid.org/0000-0001-8492-1699</orcidid><orcidid>https://orcid.org/0009-0000-4531-0609</orcidid><orcidid>https://orcid.org/0000-0002-7337-9168</orcidid><orcidid>https://orcid.org/0009-0006-8656-5134</orcidid></search><sort><creationdate>20241119</creationdate><title>G3R: Generating Rich and Fine-Grained Mmwave Radar Data From 2D Videos for Generalized Gesture Recognition</title><author>Deng, Kaikai ; Zhao, Dong ; Zheng, Wenxin ; Ling, Yue ; Yin, Kangwen ; Ma, Huadong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_107592763</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2024</creationdate><topic>2D videos</topic><topic>Accuracy</topic><topic>cross domain translation</topic><topic>Data models</topic><topic>generalized sensing</topic><topic>Gesture recognition</topic><topic>Radar</topic><topic>Radar cross-sections</topic><topic>Radar signal processing</topic><topic>Skeleton</topic><topic>synthetic radar data</topic><topic>Testing</topic><topic>Training</topic><topic>Videos</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Kaikai</creatorcontrib><creatorcontrib>Zhao, Dong</creatorcontrib><creatorcontrib>Zheng, Wenxin</creatorcontrib><creatorcontrib>Ling, Yue</creatorcontrib><creatorcontrib>Yin, Kangwen</creatorcontrib><creatorcontrib>Ma, Huadong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><jtitle>IEEE transactions on mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Kaikai</au><au>Zhao, Dong</au><au>Zheng, Wenxin</au><au>Ling, Yue</au><au>Yin, Kangwen</au><au>Ma, Huadong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>G3R: Generating Rich and Fine-Grained Mmwave Radar Data From 2D Videos for Generalized Gesture Recognition</atitle><jtitle>IEEE transactions on mobile computing</jtitle><stitle>TMC</stitle><date>2024-11-19</date><risdate>2024</risdate><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>1536-1233</issn><coden>ITMCCJ</coden><abstract>Millimeter wave radar is gaining traction recently as a promising modality for enabling pervasive and privacy-preserving gesture recognition. However, the lack of rich and fine-grained radar datasets hinders progress in developing generalized deep learning models for gesture recognition across various user postures (e.g., standing, sitting), positions, and scenes. To remedy this, we resort to designing a software pipeline that exploits wealthy 2D videos to generate realistic radar data, but it needs to address the challenge of simulating diversified and fine-grained reflection properties of user gestures. To this end, we design G 3 R with three key components: (i) a gesture reflection point generator expands the arm's skeleton points to form human reflection points; (ii) a signal simulation model simulates the multipath reflection and attenuation of radar signals to output the human intensity map; (iii) an encoder-decoder model combines a sampling module and a fitting module to address the differences in number and distribution of points between generated and real-world radar data for generating realistic radar data. We implement and evaluate G 3 R using 2D videos from public data sources and self-collected real-world radar data, demonstrating its superiority over other state-of-the-art approaches for gesture recognition.</abstract><pub>IEEE</pub><doi>10.1109/TMC.2024.3502668</doi><orcidid>https://orcid.org/0000-0002-7199-5047</orcidid><orcidid>https://orcid.org/0000-0003-1123-6978</orcidid><orcidid>https://orcid.org/0000-0001-8492-1699</orcidid><orcidid>https://orcid.org/0009-0000-4531-0609</orcidid><orcidid>https://orcid.org/0000-0002-7337-9168</orcidid><orcidid>https://orcid.org/0009-0006-8656-5134</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1536-1233 |
ispartof | IEEE transactions on mobile computing, 2024-11, p.1-18 |
issn | 1536-1233 |
language | eng |
recordid | cdi_ieee_primary_10759276 |
source | IEEE Electronic Library (IEL) Journals |
subjects | 2D videos Accuracy cross domain translation Data models generalized sensing Gesture recognition Radar Radar cross-sections Radar signal processing Skeleton synthetic radar data Testing Training Videos |
title | G3R: Generating Rich and Fine-Grained Mmwave Radar Data From 2D Videos for Generalized Gesture Recognition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A48%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=G3R:%20Generating%20Rich%20and%20Fine-Grained%20Mmwave%20Radar%20Data%20From%202D%20Videos%20for%20Generalized%20Gesture%20Recognition&rft.jtitle=IEEE%20transactions%20on%20mobile%20computing&rft.au=Deng,%20Kaikai&rft.date=2024-11-19&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=1536-1233&rft.coden=ITMCCJ&rft_id=info:doi/10.1109/TMC.2024.3502668&rft_dat=%3Cieee%3E10759276%3C/ieee%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_107592763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10759276&rfr_iscdi=true |