Loading…

G3R: Generating Rich and Fine-Grained Mmwave Radar Data From 2D Videos for Generalized Gesture Recognition

Millimeter wave radar is gaining traction recently as a promising modality for enabling pervasive and privacy-preserving gesture recognition. However, the lack of rich and fine-grained radar datasets hinders progress in developing generalized deep learning models for gesture recognition across vario...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on mobile computing 2024-11, p.1-18
Main Authors: Deng, Kaikai, Zhao, Dong, Zheng, Wenxin, Ling, Yue, Yin, Kangwen, Ma, Huadong
Format: Magazinearticle
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 18
container_issue
container_start_page 1
container_title IEEE transactions on mobile computing
container_volume
creator Deng, Kaikai
Zhao, Dong
Zheng, Wenxin
Ling, Yue
Yin, Kangwen
Ma, Huadong
description Millimeter wave radar is gaining traction recently as a promising modality for enabling pervasive and privacy-preserving gesture recognition. However, the lack of rich and fine-grained radar datasets hinders progress in developing generalized deep learning models for gesture recognition across various user postures (e.g., standing, sitting), positions, and scenes. To remedy this, we resort to designing a software pipeline that exploits wealthy 2D videos to generate realistic radar data, but it needs to address the challenge of simulating diversified and fine-grained reflection properties of user gestures. To this end, we design G 3 R with three key components: (i) a gesture reflection point generator expands the arm's skeleton points to form human reflection points; (ii) a signal simulation model simulates the multipath reflection and attenuation of radar signals to output the human intensity map; (iii) an encoder-decoder model combines a sampling module and a fitting module to address the differences in number and distribution of points between generated and real-world radar data for generating realistic radar data. We implement and evaluate G 3 R using 2D videos from public data sources and self-collected real-world radar data, demonstrating its superiority over other state-of-the-art approaches for gesture recognition.
doi_str_mv 10.1109/TMC.2024.3502668
format magazinearticle
fullrecord <record><control><sourceid>ieee</sourceid><recordid>TN_cdi_ieee_primary_10759276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10759276</ieee_id><sourcerecordid>10759276</sourcerecordid><originalsourceid>FETCH-ieee_primary_107592763</originalsourceid><addsrcrecordid>eNqFjLtug0AQAK-IJTt2-hQp9gcg9zBg0pqAGxpkpbVWZu0sgrvojiSyvz4U9KmmGM0I8axkrJTMX4_1PtZSb2OTSJ2muwexUolJI6WNWYrHEDop1S7Ps5XoKtO8QUWWPI5sr9Dw-RPQtlCypajyOKGFevjFH4IGW_RQ4IhQejeALuCDW3IBLs7Pl57vU1BRGL_9VNDZXS2P7OxGLC7YB3qauRYv5ftxf4iYiE5fngf0t5OSWZLrLDX_6D-bV0WM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype></control><display><type>magazinearticle</type><title>G3R: Generating Rich and Fine-Grained Mmwave Radar Data From 2D Videos for Generalized Gesture Recognition</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Deng, Kaikai ; Zhao, Dong ; Zheng, Wenxin ; Ling, Yue ; Yin, Kangwen ; Ma, Huadong</creator><creatorcontrib>Deng, Kaikai ; Zhao, Dong ; Zheng, Wenxin ; Ling, Yue ; Yin, Kangwen ; Ma, Huadong</creatorcontrib><description>Millimeter wave radar is gaining traction recently as a promising modality for enabling pervasive and privacy-preserving gesture recognition. However, the lack of rich and fine-grained radar datasets hinders progress in developing generalized deep learning models for gesture recognition across various user postures (e.g., standing, sitting), positions, and scenes. To remedy this, we resort to designing a software pipeline that exploits wealthy 2D videos to generate realistic radar data, but it needs to address the challenge of simulating diversified and fine-grained reflection properties of user gestures. To this end, we design G 3 R with three key components: (i) a gesture reflection point generator expands the arm's skeleton points to form human reflection points; (ii) a signal simulation model simulates the multipath reflection and attenuation of radar signals to output the human intensity map; (iii) an encoder-decoder model combines a sampling module and a fitting module to address the differences in number and distribution of points between generated and real-world radar data for generating realistic radar data. We implement and evaluate G 3 R using 2D videos from public data sources and self-collected real-world radar data, demonstrating its superiority over other state-of-the-art approaches for gesture recognition.</description><identifier>ISSN: 1536-1233</identifier><identifier>DOI: 10.1109/TMC.2024.3502668</identifier><identifier>CODEN: ITMCCJ</identifier><language>eng</language><publisher>IEEE</publisher><subject>2D videos ; Accuracy ; cross domain translation ; Data models ; generalized sensing ; Gesture recognition ; Radar ; Radar cross-sections ; Radar signal processing ; Skeleton ; synthetic radar data ; Testing ; Training ; Videos</subject><ispartof>IEEE transactions on mobile computing, 2024-11, p.1-18</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7199-5047 ; 0000-0003-1123-6978 ; 0000-0001-8492-1699 ; 0009-0000-4531-0609 ; 0000-0002-7337-9168 ; 0009-0006-8656-5134</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10759276$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>780,784,27925,54796</link.rule.ids></links><search><creatorcontrib>Deng, Kaikai</creatorcontrib><creatorcontrib>Zhao, Dong</creatorcontrib><creatorcontrib>Zheng, Wenxin</creatorcontrib><creatorcontrib>Ling, Yue</creatorcontrib><creatorcontrib>Yin, Kangwen</creatorcontrib><creatorcontrib>Ma, Huadong</creatorcontrib><title>G3R: Generating Rich and Fine-Grained Mmwave Radar Data From 2D Videos for Generalized Gesture Recognition</title><title>IEEE transactions on mobile computing</title><addtitle>TMC</addtitle><description>Millimeter wave radar is gaining traction recently as a promising modality for enabling pervasive and privacy-preserving gesture recognition. However, the lack of rich and fine-grained radar datasets hinders progress in developing generalized deep learning models for gesture recognition across various user postures (e.g., standing, sitting), positions, and scenes. To remedy this, we resort to designing a software pipeline that exploits wealthy 2D videos to generate realistic radar data, but it needs to address the challenge of simulating diversified and fine-grained reflection properties of user gestures. To this end, we design G 3 R with three key components: (i) a gesture reflection point generator expands the arm's skeleton points to form human reflection points; (ii) a signal simulation model simulates the multipath reflection and attenuation of radar signals to output the human intensity map; (iii) an encoder-decoder model combines a sampling module and a fitting module to address the differences in number and distribution of points between generated and real-world radar data for generating realistic radar data. We implement and evaluate G 3 R using 2D videos from public data sources and self-collected real-world radar data, demonstrating its superiority over other state-of-the-art approaches for gesture recognition.</description><subject>2D videos</subject><subject>Accuracy</subject><subject>cross domain translation</subject><subject>Data models</subject><subject>generalized sensing</subject><subject>Gesture recognition</subject><subject>Radar</subject><subject>Radar cross-sections</subject><subject>Radar signal processing</subject><subject>Skeleton</subject><subject>synthetic radar data</subject><subject>Testing</subject><subject>Training</subject><subject>Videos</subject><issn>1536-1233</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2024</creationdate><recordtype>magazinearticle</recordtype><recordid>eNqFjLtug0AQAK-IJTt2-hQp9gcg9zBg0pqAGxpkpbVWZu0sgrvojiSyvz4U9KmmGM0I8axkrJTMX4_1PtZSb2OTSJ2muwexUolJI6WNWYrHEDop1S7Ps5XoKtO8QUWWPI5sr9Dw-RPQtlCypajyOKGFevjFH4IGW_RQ4IhQejeALuCDW3IBLs7Pl57vU1BRGL_9VNDZXS2P7OxGLC7YB3qauRYv5ftxf4iYiE5fngf0t5OSWZLrLDX_6D-bV0WM</recordid><startdate>20241119</startdate><enddate>20241119</enddate><creator>Deng, Kaikai</creator><creator>Zhao, Dong</creator><creator>Zheng, Wenxin</creator><creator>Ling, Yue</creator><creator>Yin, Kangwen</creator><creator>Ma, Huadong</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0002-7199-5047</orcidid><orcidid>https://orcid.org/0000-0003-1123-6978</orcidid><orcidid>https://orcid.org/0000-0001-8492-1699</orcidid><orcidid>https://orcid.org/0009-0000-4531-0609</orcidid><orcidid>https://orcid.org/0000-0002-7337-9168</orcidid><orcidid>https://orcid.org/0009-0006-8656-5134</orcidid></search><sort><creationdate>20241119</creationdate><title>G3R: Generating Rich and Fine-Grained Mmwave Radar Data From 2D Videos for Generalized Gesture Recognition</title><author>Deng, Kaikai ; Zhao, Dong ; Zheng, Wenxin ; Ling, Yue ; Yin, Kangwen ; Ma, Huadong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_107592763</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2024</creationdate><topic>2D videos</topic><topic>Accuracy</topic><topic>cross domain translation</topic><topic>Data models</topic><topic>generalized sensing</topic><topic>Gesture recognition</topic><topic>Radar</topic><topic>Radar cross-sections</topic><topic>Radar signal processing</topic><topic>Skeleton</topic><topic>synthetic radar data</topic><topic>Testing</topic><topic>Training</topic><topic>Videos</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Kaikai</creatorcontrib><creatorcontrib>Zhao, Dong</creatorcontrib><creatorcontrib>Zheng, Wenxin</creatorcontrib><creatorcontrib>Ling, Yue</creatorcontrib><creatorcontrib>Yin, Kangwen</creatorcontrib><creatorcontrib>Ma, Huadong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><jtitle>IEEE transactions on mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Kaikai</au><au>Zhao, Dong</au><au>Zheng, Wenxin</au><au>Ling, Yue</au><au>Yin, Kangwen</au><au>Ma, Huadong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>G3R: Generating Rich and Fine-Grained Mmwave Radar Data From 2D Videos for Generalized Gesture Recognition</atitle><jtitle>IEEE transactions on mobile computing</jtitle><stitle>TMC</stitle><date>2024-11-19</date><risdate>2024</risdate><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>1536-1233</issn><coden>ITMCCJ</coden><abstract>Millimeter wave radar is gaining traction recently as a promising modality for enabling pervasive and privacy-preserving gesture recognition. However, the lack of rich and fine-grained radar datasets hinders progress in developing generalized deep learning models for gesture recognition across various user postures (e.g., standing, sitting), positions, and scenes. To remedy this, we resort to designing a software pipeline that exploits wealthy 2D videos to generate realistic radar data, but it needs to address the challenge of simulating diversified and fine-grained reflection properties of user gestures. To this end, we design G 3 R with three key components: (i) a gesture reflection point generator expands the arm's skeleton points to form human reflection points; (ii) a signal simulation model simulates the multipath reflection and attenuation of radar signals to output the human intensity map; (iii) an encoder-decoder model combines a sampling module and a fitting module to address the differences in number and distribution of points between generated and real-world radar data for generating realistic radar data. We implement and evaluate G 3 R using 2D videos from public data sources and self-collected real-world radar data, demonstrating its superiority over other state-of-the-art approaches for gesture recognition.</abstract><pub>IEEE</pub><doi>10.1109/TMC.2024.3502668</doi><orcidid>https://orcid.org/0000-0002-7199-5047</orcidid><orcidid>https://orcid.org/0000-0003-1123-6978</orcidid><orcidid>https://orcid.org/0000-0001-8492-1699</orcidid><orcidid>https://orcid.org/0009-0000-4531-0609</orcidid><orcidid>https://orcid.org/0000-0002-7337-9168</orcidid><orcidid>https://orcid.org/0009-0006-8656-5134</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1536-1233
ispartof IEEE transactions on mobile computing, 2024-11, p.1-18
issn 1536-1233
language eng
recordid cdi_ieee_primary_10759276
source IEEE Electronic Library (IEL) Journals
subjects 2D videos
Accuracy
cross domain translation
Data models
generalized sensing
Gesture recognition
Radar
Radar cross-sections
Radar signal processing
Skeleton
synthetic radar data
Testing
Training
Videos
title G3R: Generating Rich and Fine-Grained Mmwave Radar Data From 2D Videos for Generalized Gesture Recognition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A48%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=G3R:%20Generating%20Rich%20and%20Fine-Grained%20Mmwave%20Radar%20Data%20From%202D%20Videos%20for%20Generalized%20Gesture%20Recognition&rft.jtitle=IEEE%20transactions%20on%20mobile%20computing&rft.au=Deng,%20Kaikai&rft.date=2024-11-19&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=1536-1233&rft.coden=ITMCCJ&rft_id=info:doi/10.1109/TMC.2024.3502668&rft_dat=%3Cieee%3E10759276%3C/ieee%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_107592763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10759276&rfr_iscdi=true