Loading…
Partial Attention for Data-Driven Image Super Resolution Under Low Computing Cost
Low computation cost is crucial for a seamless experience on mobile consumer devices with limited resources. This study presents an efficient attention module for deep learning-based image super-resolution under low computing cost. We propose partial enhanced spatial attention (PESA) to achieve effi...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 539 |
container_issue | |
container_start_page | 538 |
container_title | |
container_volume | |
creator | Nugroho, Kuntoro Adi Windarto, Yudi Eko |
description | Low computation cost is crucial for a seamless experience on mobile consumer devices with limited resources. This study presents an efficient attention module for deep learning-based image super-resolution under low computing cost. We propose partial enhanced spatial attention (PESA) to achieve efficient and high-performing attention modules, which draws inspiration from partial convolution for feature extraction. Utilizing an efficient super-resolution network, our approach is assessed on two super-resolution datasets and contrasted with other attention strategies. PESA obtains the lowest computing cost and model parameters, as well as the top quantitative results on both datasets. |
doi_str_mv | 10.1109/GCCE62371.2024.10760957 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10760957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10760957</ieee_id><sourcerecordid>10760957</sourcerecordid><originalsourceid>FETCH-ieee_primary_107609573</originalsourceid><addsrcrecordid>eNqFjsFqAjEURWNBUOr8gWB-YKYviZmYpYy2Cl3UVtcS8CmRmWRIouLfO5R27epezrmLS8iEQcEY6LePqlqWXChWcODTgoEqQUvVI5lWeiYkCClB6Rcy5KUWOczkdECyGM8AwCVwXfIh2XyZkKyp6TwldMl6R48-0IVJJl8Ee0VH1405If25tBjoN0ZfX35nO3fowKe_0co3bcfcqWsxjUj_aOqI2V--kvH7clutcouI-zbYxoT7_v-teKIft4ZCsg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Partial Attention for Data-Driven Image Super Resolution Under Low Computing Cost</title><source>IEEE Xplore All Conference Series</source><creator>Nugroho, Kuntoro Adi ; Windarto, Yudi Eko</creator><creatorcontrib>Nugroho, Kuntoro Adi ; Windarto, Yudi Eko</creatorcontrib><description>Low computation cost is crucial for a seamless experience on mobile consumer devices with limited resources. This study presents an efficient attention module for deep learning-based image super-resolution under low computing cost. We propose partial enhanced spatial attention (PESA) to achieve efficient and high-performing attention modules, which draws inspiration from partial convolution for feature extraction. Utilizing an efficient super-resolution network, our approach is assessed on two super-resolution datasets and contrasted with other attention strategies. PESA obtains the lowest computing cost and model parameters, as well as the top quantitative results on both datasets.</description><identifier>EISSN: 2693-0854</identifier><identifier>EISBN: 9798350355079</identifier><identifier>DOI: 10.1109/GCCE62371.2024.10760957</identifier><language>eng</language><publisher>IEEE</publisher><subject>attention ; Attention mechanisms ; Computational efficiency ; Computational modeling ; Consumer electronics ; Convolution ; Costs ; efficient ; Feature extraction ; Interpolation ; partial ; super resolution ; Superresolution</subject><ispartof>IEEE Global Conference on Consumer Electronics, 2024, p.538-539</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10760957$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10760957$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nugroho, Kuntoro Adi</creatorcontrib><creatorcontrib>Windarto, Yudi Eko</creatorcontrib><title>Partial Attention for Data-Driven Image Super Resolution Under Low Computing Cost</title><title>IEEE Global Conference on Consumer Electronics</title><addtitle>GCCE</addtitle><description>Low computation cost is crucial for a seamless experience on mobile consumer devices with limited resources. This study presents an efficient attention module for deep learning-based image super-resolution under low computing cost. We propose partial enhanced spatial attention (PESA) to achieve efficient and high-performing attention modules, which draws inspiration from partial convolution for feature extraction. Utilizing an efficient super-resolution network, our approach is assessed on two super-resolution datasets and contrasted with other attention strategies. PESA obtains the lowest computing cost and model parameters, as well as the top quantitative results on both datasets.</description><subject>attention</subject><subject>Attention mechanisms</subject><subject>Computational efficiency</subject><subject>Computational modeling</subject><subject>Consumer electronics</subject><subject>Convolution</subject><subject>Costs</subject><subject>efficient</subject><subject>Feature extraction</subject><subject>Interpolation</subject><subject>partial</subject><subject>super resolution</subject><subject>Superresolution</subject><issn>2693-0854</issn><isbn>9798350355079</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFjsFqAjEURWNBUOr8gWB-YKYviZmYpYy2Cl3UVtcS8CmRmWRIouLfO5R27epezrmLS8iEQcEY6LePqlqWXChWcODTgoEqQUvVI5lWeiYkCClB6Rcy5KUWOczkdECyGM8AwCVwXfIh2XyZkKyp6TwldMl6R48-0IVJJl8Ee0VH1405If25tBjoN0ZfX35nO3fowKe_0co3bcfcqWsxjUj_aOqI2V--kvH7clutcouI-zbYxoT7_v-teKIft4ZCsg</recordid><startdate>20241029</startdate><enddate>20241029</enddate><creator>Nugroho, Kuntoro Adi</creator><creator>Windarto, Yudi Eko</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20241029</creationdate><title>Partial Attention for Data-Driven Image Super Resolution Under Low Computing Cost</title><author>Nugroho, Kuntoro Adi ; Windarto, Yudi Eko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_107609573</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>attention</topic><topic>Attention mechanisms</topic><topic>Computational efficiency</topic><topic>Computational modeling</topic><topic>Consumer electronics</topic><topic>Convolution</topic><topic>Costs</topic><topic>efficient</topic><topic>Feature extraction</topic><topic>Interpolation</topic><topic>partial</topic><topic>super resolution</topic><topic>Superresolution</topic><toplevel>online_resources</toplevel><creatorcontrib>Nugroho, Kuntoro Adi</creatorcontrib><creatorcontrib>Windarto, Yudi Eko</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nugroho, Kuntoro Adi</au><au>Windarto, Yudi Eko</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Partial Attention for Data-Driven Image Super Resolution Under Low Computing Cost</atitle><btitle>IEEE Global Conference on Consumer Electronics</btitle><stitle>GCCE</stitle><date>2024-10-29</date><risdate>2024</risdate><spage>538</spage><epage>539</epage><pages>538-539</pages><eissn>2693-0854</eissn><eisbn>9798350355079</eisbn><abstract>Low computation cost is crucial for a seamless experience on mobile consumer devices with limited resources. This study presents an efficient attention module for deep learning-based image super-resolution under low computing cost. We propose partial enhanced spatial attention (PESA) to achieve efficient and high-performing attention modules, which draws inspiration from partial convolution for feature extraction. Utilizing an efficient super-resolution network, our approach is assessed on two super-resolution datasets and contrasted with other attention strategies. PESA obtains the lowest computing cost and model parameters, as well as the top quantitative results on both datasets.</abstract><pub>IEEE</pub><doi>10.1109/GCCE62371.2024.10760957</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2693-0854 |
ispartof | IEEE Global Conference on Consumer Electronics, 2024, p.538-539 |
issn | 2693-0854 |
language | eng |
recordid | cdi_ieee_primary_10760957 |
source | IEEE Xplore All Conference Series |
subjects | attention Attention mechanisms Computational efficiency Computational modeling Consumer electronics Convolution Costs efficient Feature extraction Interpolation partial super resolution Superresolution |
title | Partial Attention for Data-Driven Image Super Resolution Under Low Computing Cost |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A11%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Partial%20Attention%20for%20Data-Driven%20Image%20Super%20Resolution%20Under%20Low%20Computing%20Cost&rft.btitle=IEEE%20Global%20Conference%20on%20Consumer%20Electronics&rft.au=Nugroho,%20Kuntoro%20Adi&rft.date=2024-10-29&rft.spage=538&rft.epage=539&rft.pages=538-539&rft.eissn=2693-0854&rft_id=info:doi/10.1109/GCCE62371.2024.10760957&rft.eisbn=9798350355079&rft_dat=%3Cieee_CHZPO%3E10760957%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_107609573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10760957&rfr_iscdi=true |