Loading…
Performance Enhancement of InGaN Laser Photovoltaic Cell With AlGaN Strain Compensation Layer Irradiated by 450 nm Laser
A high-efficiency indium gallium nitride (InGaN) laser photovoltaic cell (LPVC) was demonstrated to achieve a photoelectric conversion efficiency (η) of 23.09% by incorporating an AlGaN strain compensation layer (SCL) grown on a (0001)-oriented patterned sapphire substrate (PSS). The photoluminescen...
Saved in:
Published in: | IEEE journal of photovoltaics 2025-01, Vol.15 (1), p.105-109 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c179t-28c6de6cc931f40610a7a4211a88a78191c3a0d9551437e69e391094661ec0113 |
container_end_page | 109 |
container_issue | 1 |
container_start_page | 105 |
container_title | IEEE journal of photovoltaics |
container_volume | 15 |
creator | Shan, Heng-Sheng Wang, Yi-Xin Li, Cheng-Ke Wang, Ning Li, Xiao-Ya Ma, Shu-Fang Xu, Bing-She |
description | A high-efficiency indium gallium nitride (InGaN) laser photovoltaic cell (LPVC) was demonstrated to achieve a photoelectric conversion efficiency (η) of 23.09% by incorporating an AlGaN strain compensation layer (SCL) grown on a (0001)-oriented patterned sapphire substrate (PSS). The photoluminescence spectra confirm that the peak splitting is reduced after the insertion of AlGaN SCL, indicating a more uniform distribution of In. In addition, the full width at half maximum of the sample is narrowed, indicating that the crystal quality is improved after the insertion of AlGaN SCL. The X-ray diffraction analysis reveals the effective modulation of strain relaxation in InGaN materials by the AlGaN SCL, enhancing steepness of the interface between the well and the barrier in the active region compared with materials without the AlGaN SCL. Furthermore, Raman analysis shows an additional release of GaN compressive stress in InGaN materials, providing full validation for the stress regulation model from introducing the AlGaN SCL. Finally, introducing material parameters into Silvaco software resulted in simulation and experimental errors of less than 2%, the critical role of SCL in efficiency improvement is validated. Valuable insights on optimizing device design for high-efficiency InGaN LPVCs are provided. |
doi_str_mv | 10.1109/JPHOTOV.2024.3495024 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10764776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10764776</ieee_id><sourcerecordid>3149094465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c179t-28c6de6cc931f40610a7a4211a88a78191c3a0d9551437e69e391094661ec0113</originalsourceid><addsrcrecordid>eNpNkNFKwzAUhosoOHRvsIuA15s5TZo2l2PMbTLcwKmXJaanrKNNZpqJe3tTOsFz85-L_zsHvigaAZ0AUPn4vF1udpv3SUxjPmFcJiGvokEMiRgzTtn1384yuI2GbXugYQRNhOCD6GeLrrSuUUYjmZt9lw0aT2xJVmahXshatejIdm-9_ba1V5UmM6xr8lH5PZnWXeXVO1UZMrPNEU2rfGVNwM4BWzmnikp5LMjnmfCEEtP0F--jm1LVLQ4veRe9Pc13s-V4vVmsZtP1WEMq_TjOtChQaC0ZlJwKoCpVPAZQWabSDCRopmghkwQ4S1FIZDJY4UIAagrA7qKH_u7R2a8Ttj4_2JMz4WXOgMtQ5SIJLd63tLNt67DMj65qlDvnQPNOc37RnHea84vmgI16rELEf0gqeJoK9guf4nfG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149094465</pqid></control><display><type>article</type><title>Performance Enhancement of InGaN Laser Photovoltaic Cell With AlGaN Strain Compensation Layer Irradiated by 450 nm Laser</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Shan, Heng-Sheng ; Wang, Yi-Xin ; Li, Cheng-Ke ; Wang, Ning ; Li, Xiao-Ya ; Ma, Shu-Fang ; Xu, Bing-She</creator><creatorcontrib>Shan, Heng-Sheng ; Wang, Yi-Xin ; Li, Cheng-Ke ; Wang, Ning ; Li, Xiao-Ya ; Ma, Shu-Fang ; Xu, Bing-She</creatorcontrib><description>A high-efficiency indium gallium nitride (InGaN) laser photovoltaic cell (LPVC) was demonstrated to achieve a photoelectric conversion efficiency (η) of 23.09% by incorporating an AlGaN strain compensation layer (SCL) grown on a (0001)-oriented patterned sapphire substrate (PSS). The photoluminescence spectra confirm that the peak splitting is reduced after the insertion of AlGaN SCL, indicating a more uniform distribution of In. In addition, the full width at half maximum of the sample is narrowed, indicating that the crystal quality is improved after the insertion of AlGaN SCL. The X-ray diffraction analysis reveals the effective modulation of strain relaxation in InGaN materials by the AlGaN SCL, enhancing steepness of the interface between the well and the barrier in the active region compared with materials without the AlGaN SCL. Furthermore, Raman analysis shows an additional release of GaN compressive stress in InGaN materials, providing full validation for the stress regulation model from introducing the AlGaN SCL. Finally, introducing material parameters into Silvaco software resulted in simulation and experimental errors of less than 2%, the critical role of SCL in efficiency improvement is validated. Valuable insights on optimizing device design for high-efficiency InGaN LPVCs are provided.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2024.3495024</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>AlGaN strain compensation layer (SCL) ; Aluminum gallium nitride ; Aluminum gallium nitrides ; Compensation ; Compressive properties ; Design optimization ; Diffraction patterns ; Efficiency ; Energy conversion efficiency ; Gallium nitrides ; III-V semiconductor materials ; Indium gallium nitrides ; InGaN/ GaN multiple quantum well (MQW) ; Insertion ; interface steepness ; laser photovoltaic cell (LPVC) ; Lasers ; Light emitting diodes ; Performance evaluation ; photoelectric conversion efficiency ; Photoelectricity ; Photoluminescence ; Photovoltaic cells ; Quantum well devices ; Raman spectroscopy ; Sapphire ; Slopes ; Strain ; Strain analysis ; Strain relaxation ; Stress ; Substrates ; Wide band gap semiconductors</subject><ispartof>IEEE journal of photovoltaics, 2025-01, Vol.15 (1), p.105-109</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c179t-28c6de6cc931f40610a7a4211a88a78191c3a0d9551437e69e391094661ec0113</cites><orcidid>0000-0002-6689-6300 ; 0000-0003-4845-3167 ; 0009-0008-8357-0776 ; 0000-0003-0726-0924 ; 0000-0002-3808-2828 ; 0000-0002-5229-7665</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10764776$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Shan, Heng-Sheng</creatorcontrib><creatorcontrib>Wang, Yi-Xin</creatorcontrib><creatorcontrib>Li, Cheng-Ke</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Li, Xiao-Ya</creatorcontrib><creatorcontrib>Ma, Shu-Fang</creatorcontrib><creatorcontrib>Xu, Bing-She</creatorcontrib><title>Performance Enhancement of InGaN Laser Photovoltaic Cell With AlGaN Strain Compensation Layer Irradiated by 450 nm Laser</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>A high-efficiency indium gallium nitride (InGaN) laser photovoltaic cell (LPVC) was demonstrated to achieve a photoelectric conversion efficiency (η) of 23.09% by incorporating an AlGaN strain compensation layer (SCL) grown on a (0001)-oriented patterned sapphire substrate (PSS). The photoluminescence spectra confirm that the peak splitting is reduced after the insertion of AlGaN SCL, indicating a more uniform distribution of In. In addition, the full width at half maximum of the sample is narrowed, indicating that the crystal quality is improved after the insertion of AlGaN SCL. The X-ray diffraction analysis reveals the effective modulation of strain relaxation in InGaN materials by the AlGaN SCL, enhancing steepness of the interface between the well and the barrier in the active region compared with materials without the AlGaN SCL. Furthermore, Raman analysis shows an additional release of GaN compressive stress in InGaN materials, providing full validation for the stress regulation model from introducing the AlGaN SCL. Finally, introducing material parameters into Silvaco software resulted in simulation and experimental errors of less than 2%, the critical role of SCL in efficiency improvement is validated. Valuable insights on optimizing device design for high-efficiency InGaN LPVCs are provided.</description><subject>AlGaN strain compensation layer (SCL)</subject><subject>Aluminum gallium nitride</subject><subject>Aluminum gallium nitrides</subject><subject>Compensation</subject><subject>Compressive properties</subject><subject>Design optimization</subject><subject>Diffraction patterns</subject><subject>Efficiency</subject><subject>Energy conversion efficiency</subject><subject>Gallium nitrides</subject><subject>III-V semiconductor materials</subject><subject>Indium gallium nitrides</subject><subject>InGaN/ GaN multiple quantum well (MQW)</subject><subject>Insertion</subject><subject>interface steepness</subject><subject>laser photovoltaic cell (LPVC)</subject><subject>Lasers</subject><subject>Light emitting diodes</subject><subject>Performance evaluation</subject><subject>photoelectric conversion efficiency</subject><subject>Photoelectricity</subject><subject>Photoluminescence</subject><subject>Photovoltaic cells</subject><subject>Quantum well devices</subject><subject>Raman spectroscopy</subject><subject>Sapphire</subject><subject>Slopes</subject><subject>Strain</subject><subject>Strain analysis</subject><subject>Strain relaxation</subject><subject>Stress</subject><subject>Substrates</subject><subject>Wide band gap semiconductors</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpNkNFKwzAUhosoOHRvsIuA15s5TZo2l2PMbTLcwKmXJaanrKNNZpqJe3tTOsFz85-L_zsHvigaAZ0AUPn4vF1udpv3SUxjPmFcJiGvokEMiRgzTtn1384yuI2GbXugYQRNhOCD6GeLrrSuUUYjmZt9lw0aT2xJVmahXshatejIdm-9_ba1V5UmM6xr8lH5PZnWXeXVO1UZMrPNEU2rfGVNwM4BWzmnikp5LMjnmfCEEtP0F--jm1LVLQ4veRe9Pc13s-V4vVmsZtP1WEMq_TjOtChQaC0ZlJwKoCpVPAZQWabSDCRopmghkwQ4S1FIZDJY4UIAagrA7qKH_u7R2a8Ttj4_2JMz4WXOgMtQ5SIJLd63tLNt67DMj65qlDvnQPNOc37RnHea84vmgI16rELEf0gqeJoK9guf4nfG</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Shan, Heng-Sheng</creator><creator>Wang, Yi-Xin</creator><creator>Li, Cheng-Ke</creator><creator>Wang, Ning</creator><creator>Li, Xiao-Ya</creator><creator>Ma, Shu-Fang</creator><creator>Xu, Bing-She</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6689-6300</orcidid><orcidid>https://orcid.org/0000-0003-4845-3167</orcidid><orcidid>https://orcid.org/0009-0008-8357-0776</orcidid><orcidid>https://orcid.org/0000-0003-0726-0924</orcidid><orcidid>https://orcid.org/0000-0002-3808-2828</orcidid><orcidid>https://orcid.org/0000-0002-5229-7665</orcidid></search><sort><creationdate>20250101</creationdate><title>Performance Enhancement of InGaN Laser Photovoltaic Cell With AlGaN Strain Compensation Layer Irradiated by 450 nm Laser</title><author>Shan, Heng-Sheng ; Wang, Yi-Xin ; Li, Cheng-Ke ; Wang, Ning ; Li, Xiao-Ya ; Ma, Shu-Fang ; Xu, Bing-She</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c179t-28c6de6cc931f40610a7a4211a88a78191c3a0d9551437e69e391094661ec0113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>AlGaN strain compensation layer (SCL)</topic><topic>Aluminum gallium nitride</topic><topic>Aluminum gallium nitrides</topic><topic>Compensation</topic><topic>Compressive properties</topic><topic>Design optimization</topic><topic>Diffraction patterns</topic><topic>Efficiency</topic><topic>Energy conversion efficiency</topic><topic>Gallium nitrides</topic><topic>III-V semiconductor materials</topic><topic>Indium gallium nitrides</topic><topic>InGaN/ GaN multiple quantum well (MQW)</topic><topic>Insertion</topic><topic>interface steepness</topic><topic>laser photovoltaic cell (LPVC)</topic><topic>Lasers</topic><topic>Light emitting diodes</topic><topic>Performance evaluation</topic><topic>photoelectric conversion efficiency</topic><topic>Photoelectricity</topic><topic>Photoluminescence</topic><topic>Photovoltaic cells</topic><topic>Quantum well devices</topic><topic>Raman spectroscopy</topic><topic>Sapphire</topic><topic>Slopes</topic><topic>Strain</topic><topic>Strain analysis</topic><topic>Strain relaxation</topic><topic>Stress</topic><topic>Substrates</topic><topic>Wide band gap semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shan, Heng-Sheng</creatorcontrib><creatorcontrib>Wang, Yi-Xin</creatorcontrib><creatorcontrib>Li, Cheng-Ke</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Li, Xiao-Ya</creatorcontrib><creatorcontrib>Ma, Shu-Fang</creatorcontrib><creatorcontrib>Xu, Bing-She</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shan, Heng-Sheng</au><au>Wang, Yi-Xin</au><au>Li, Cheng-Ke</au><au>Wang, Ning</au><au>Li, Xiao-Ya</au><au>Ma, Shu-Fang</au><au>Xu, Bing-She</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Enhancement of InGaN Laser Photovoltaic Cell With AlGaN Strain Compensation Layer Irradiated by 450 nm Laser</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2025-01-01</date><risdate>2025</risdate><volume>15</volume><issue>1</issue><spage>105</spage><epage>109</epage><pages>105-109</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>A high-efficiency indium gallium nitride (InGaN) laser photovoltaic cell (LPVC) was demonstrated to achieve a photoelectric conversion efficiency (η) of 23.09% by incorporating an AlGaN strain compensation layer (SCL) grown on a (0001)-oriented patterned sapphire substrate (PSS). The photoluminescence spectra confirm that the peak splitting is reduced after the insertion of AlGaN SCL, indicating a more uniform distribution of In. In addition, the full width at half maximum of the sample is narrowed, indicating that the crystal quality is improved after the insertion of AlGaN SCL. The X-ray diffraction analysis reveals the effective modulation of strain relaxation in InGaN materials by the AlGaN SCL, enhancing steepness of the interface between the well and the barrier in the active region compared with materials without the AlGaN SCL. Furthermore, Raman analysis shows an additional release of GaN compressive stress in InGaN materials, providing full validation for the stress regulation model from introducing the AlGaN SCL. Finally, introducing material parameters into Silvaco software resulted in simulation and experimental errors of less than 2%, the critical role of SCL in efficiency improvement is validated. Valuable insights on optimizing device design for high-efficiency InGaN LPVCs are provided.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2024.3495024</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6689-6300</orcidid><orcidid>https://orcid.org/0000-0003-4845-3167</orcidid><orcidid>https://orcid.org/0009-0008-8357-0776</orcidid><orcidid>https://orcid.org/0000-0003-0726-0924</orcidid><orcidid>https://orcid.org/0000-0002-3808-2828</orcidid><orcidid>https://orcid.org/0000-0002-5229-7665</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2156-3381 |
ispartof | IEEE journal of photovoltaics, 2025-01, Vol.15 (1), p.105-109 |
issn | 2156-3381 2156-3403 |
language | eng |
recordid | cdi_ieee_primary_10764776 |
source | IEEE Electronic Library (IEL) Journals |
subjects | AlGaN strain compensation layer (SCL) Aluminum gallium nitride Aluminum gallium nitrides Compensation Compressive properties Design optimization Diffraction patterns Efficiency Energy conversion efficiency Gallium nitrides III-V semiconductor materials Indium gallium nitrides InGaN/ GaN multiple quantum well (MQW) Insertion interface steepness laser photovoltaic cell (LPVC) Lasers Light emitting diodes Performance evaluation photoelectric conversion efficiency Photoelectricity Photoluminescence Photovoltaic cells Quantum well devices Raman spectroscopy Sapphire Slopes Strain Strain analysis Strain relaxation Stress Substrates Wide band gap semiconductors |
title | Performance Enhancement of InGaN Laser Photovoltaic Cell With AlGaN Strain Compensation Layer Irradiated by 450 nm Laser |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A33%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Enhancement%20of%20InGaN%20Laser%20Photovoltaic%20Cell%20With%20AlGaN%20Strain%20Compensation%20Layer%20Irradiated%20by%20450%20nm%20Laser&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Shan,%20Heng-Sheng&rft.date=2025-01-01&rft.volume=15&rft.issue=1&rft.spage=105&rft.epage=109&rft.pages=105-109&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2024.3495024&rft_dat=%3Cproquest_ieee_%3E3149094465%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c179t-28c6de6cc931f40610a7a4211a88a78191c3a0d9551437e69e391094661ec0113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3149094465&rft_id=info:pmid/&rft_ieee_id=10764776&rfr_iscdi=true |