Loading…

Performance Enhancement of InGaN Laser Photovoltaic Cell With AlGaN Strain Compensation Layer Irradiated by 450 nm Laser

A high-efficiency indium gallium nitride (InGaN) laser photovoltaic cell (LPVC) was demonstrated to achieve a photoelectric conversion efficiency (η) of 23.09% by incorporating an AlGaN strain compensation layer (SCL) grown on a (0001)-oriented patterned sapphire substrate (PSS). The photoluminescen...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of photovoltaics 2025-01, Vol.15 (1), p.105-109
Main Authors: Shan, Heng-Sheng, Wang, Yi-Xin, Li, Cheng-Ke, Wang, Ning, Li, Xiao-Ya, Ma, Shu-Fang, Xu, Bing-She
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c179t-28c6de6cc931f40610a7a4211a88a78191c3a0d9551437e69e391094661ec0113
container_end_page 109
container_issue 1
container_start_page 105
container_title IEEE journal of photovoltaics
container_volume 15
creator Shan, Heng-Sheng
Wang, Yi-Xin
Li, Cheng-Ke
Wang, Ning
Li, Xiao-Ya
Ma, Shu-Fang
Xu, Bing-She
description A high-efficiency indium gallium nitride (InGaN) laser photovoltaic cell (LPVC) was demonstrated to achieve a photoelectric conversion efficiency (η) of 23.09% by incorporating an AlGaN strain compensation layer (SCL) grown on a (0001)-oriented patterned sapphire substrate (PSS). The photoluminescence spectra confirm that the peak splitting is reduced after the insertion of AlGaN SCL, indicating a more uniform distribution of In. In addition, the full width at half maximum of the sample is narrowed, indicating that the crystal quality is improved after the insertion of AlGaN SCL. The X-ray diffraction analysis reveals the effective modulation of strain relaxation in InGaN materials by the AlGaN SCL, enhancing steepness of the interface between the well and the barrier in the active region compared with materials without the AlGaN SCL. Furthermore, Raman analysis shows an additional release of GaN compressive stress in InGaN materials, providing full validation for the stress regulation model from introducing the AlGaN SCL. Finally, introducing material parameters into Silvaco software resulted in simulation and experimental errors of less than 2%, the critical role of SCL in efficiency improvement is validated. Valuable insights on optimizing device design for high-efficiency InGaN LPVCs are provided.
doi_str_mv 10.1109/JPHOTOV.2024.3495024
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10764776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10764776</ieee_id><sourcerecordid>3149094465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c179t-28c6de6cc931f40610a7a4211a88a78191c3a0d9551437e69e391094661ec0113</originalsourceid><addsrcrecordid>eNpNkNFKwzAUhosoOHRvsIuA15s5TZo2l2PMbTLcwKmXJaanrKNNZpqJe3tTOsFz85-L_zsHvigaAZ0AUPn4vF1udpv3SUxjPmFcJiGvokEMiRgzTtn1384yuI2GbXugYQRNhOCD6GeLrrSuUUYjmZt9lw0aT2xJVmahXshatejIdm-9_ba1V5UmM6xr8lH5PZnWXeXVO1UZMrPNEU2rfGVNwM4BWzmnikp5LMjnmfCEEtP0F--jm1LVLQ4veRe9Pc13s-V4vVmsZtP1WEMq_TjOtChQaC0ZlJwKoCpVPAZQWabSDCRopmghkwQ4S1FIZDJY4UIAagrA7qKH_u7R2a8Ttj4_2JMz4WXOgMtQ5SIJLd63tLNt67DMj65qlDvnQPNOc37RnHea84vmgI16rELEf0gqeJoK9guf4nfG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149094465</pqid></control><display><type>article</type><title>Performance Enhancement of InGaN Laser Photovoltaic Cell With AlGaN Strain Compensation Layer Irradiated by 450 nm Laser</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Shan, Heng-Sheng ; Wang, Yi-Xin ; Li, Cheng-Ke ; Wang, Ning ; Li, Xiao-Ya ; Ma, Shu-Fang ; Xu, Bing-She</creator><creatorcontrib>Shan, Heng-Sheng ; Wang, Yi-Xin ; Li, Cheng-Ke ; Wang, Ning ; Li, Xiao-Ya ; Ma, Shu-Fang ; Xu, Bing-She</creatorcontrib><description>A high-efficiency indium gallium nitride (InGaN) laser photovoltaic cell (LPVC) was demonstrated to achieve a photoelectric conversion efficiency (η) of 23.09% by incorporating an AlGaN strain compensation layer (SCL) grown on a (0001)-oriented patterned sapphire substrate (PSS). The photoluminescence spectra confirm that the peak splitting is reduced after the insertion of AlGaN SCL, indicating a more uniform distribution of In. In addition, the full width at half maximum of the sample is narrowed, indicating that the crystal quality is improved after the insertion of AlGaN SCL. The X-ray diffraction analysis reveals the effective modulation of strain relaxation in InGaN materials by the AlGaN SCL, enhancing steepness of the interface between the well and the barrier in the active region compared with materials without the AlGaN SCL. Furthermore, Raman analysis shows an additional release of GaN compressive stress in InGaN materials, providing full validation for the stress regulation model from introducing the AlGaN SCL. Finally, introducing material parameters into Silvaco software resulted in simulation and experimental errors of less than 2%, the critical role of SCL in efficiency improvement is validated. Valuable insights on optimizing device design for high-efficiency InGaN LPVCs are provided.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2024.3495024</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>AlGaN strain compensation layer (SCL) ; Aluminum gallium nitride ; Aluminum gallium nitrides ; Compensation ; Compressive properties ; Design optimization ; Diffraction patterns ; Efficiency ; Energy conversion efficiency ; Gallium nitrides ; III-V semiconductor materials ; Indium gallium nitrides ; InGaN/ GaN multiple quantum well (MQW) ; Insertion ; interface steepness ; laser photovoltaic cell (LPVC) ; Lasers ; Light emitting diodes ; Performance evaluation ; photoelectric conversion efficiency ; Photoelectricity ; Photoluminescence ; Photovoltaic cells ; Quantum well devices ; Raman spectroscopy ; Sapphire ; Slopes ; Strain ; Strain analysis ; Strain relaxation ; Stress ; Substrates ; Wide band gap semiconductors</subject><ispartof>IEEE journal of photovoltaics, 2025-01, Vol.15 (1), p.105-109</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c179t-28c6de6cc931f40610a7a4211a88a78191c3a0d9551437e69e391094661ec0113</cites><orcidid>0000-0002-6689-6300 ; 0000-0003-4845-3167 ; 0009-0008-8357-0776 ; 0000-0003-0726-0924 ; 0000-0002-3808-2828 ; 0000-0002-5229-7665</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10764776$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Shan, Heng-Sheng</creatorcontrib><creatorcontrib>Wang, Yi-Xin</creatorcontrib><creatorcontrib>Li, Cheng-Ke</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Li, Xiao-Ya</creatorcontrib><creatorcontrib>Ma, Shu-Fang</creatorcontrib><creatorcontrib>Xu, Bing-She</creatorcontrib><title>Performance Enhancement of InGaN Laser Photovoltaic Cell With AlGaN Strain Compensation Layer Irradiated by 450 nm Laser</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>A high-efficiency indium gallium nitride (InGaN) laser photovoltaic cell (LPVC) was demonstrated to achieve a photoelectric conversion efficiency (η) of 23.09% by incorporating an AlGaN strain compensation layer (SCL) grown on a (0001)-oriented patterned sapphire substrate (PSS). The photoluminescence spectra confirm that the peak splitting is reduced after the insertion of AlGaN SCL, indicating a more uniform distribution of In. In addition, the full width at half maximum of the sample is narrowed, indicating that the crystal quality is improved after the insertion of AlGaN SCL. The X-ray diffraction analysis reveals the effective modulation of strain relaxation in InGaN materials by the AlGaN SCL, enhancing steepness of the interface between the well and the barrier in the active region compared with materials without the AlGaN SCL. Furthermore, Raman analysis shows an additional release of GaN compressive stress in InGaN materials, providing full validation for the stress regulation model from introducing the AlGaN SCL. Finally, introducing material parameters into Silvaco software resulted in simulation and experimental errors of less than 2%, the critical role of SCL in efficiency improvement is validated. Valuable insights on optimizing device design for high-efficiency InGaN LPVCs are provided.</description><subject>AlGaN strain compensation layer (SCL)</subject><subject>Aluminum gallium nitride</subject><subject>Aluminum gallium nitrides</subject><subject>Compensation</subject><subject>Compressive properties</subject><subject>Design optimization</subject><subject>Diffraction patterns</subject><subject>Efficiency</subject><subject>Energy conversion efficiency</subject><subject>Gallium nitrides</subject><subject>III-V semiconductor materials</subject><subject>Indium gallium nitrides</subject><subject>InGaN/ GaN multiple quantum well (MQW)</subject><subject>Insertion</subject><subject>interface steepness</subject><subject>laser photovoltaic cell (LPVC)</subject><subject>Lasers</subject><subject>Light emitting diodes</subject><subject>Performance evaluation</subject><subject>photoelectric conversion efficiency</subject><subject>Photoelectricity</subject><subject>Photoluminescence</subject><subject>Photovoltaic cells</subject><subject>Quantum well devices</subject><subject>Raman spectroscopy</subject><subject>Sapphire</subject><subject>Slopes</subject><subject>Strain</subject><subject>Strain analysis</subject><subject>Strain relaxation</subject><subject>Stress</subject><subject>Substrates</subject><subject>Wide band gap semiconductors</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpNkNFKwzAUhosoOHRvsIuA15s5TZo2l2PMbTLcwKmXJaanrKNNZpqJe3tTOsFz85-L_zsHvigaAZ0AUPn4vF1udpv3SUxjPmFcJiGvokEMiRgzTtn1384yuI2GbXugYQRNhOCD6GeLrrSuUUYjmZt9lw0aT2xJVmahXshatejIdm-9_ba1V5UmM6xr8lH5PZnWXeXVO1UZMrPNEU2rfGVNwM4BWzmnikp5LMjnmfCEEtP0F--jm1LVLQ4veRe9Pc13s-V4vVmsZtP1WEMq_TjOtChQaC0ZlJwKoCpVPAZQWabSDCRopmghkwQ4S1FIZDJY4UIAagrA7qKH_u7R2a8Ttj4_2JMz4WXOgMtQ5SIJLd63tLNt67DMj65qlDvnQPNOc37RnHea84vmgI16rELEf0gqeJoK9guf4nfG</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Shan, Heng-Sheng</creator><creator>Wang, Yi-Xin</creator><creator>Li, Cheng-Ke</creator><creator>Wang, Ning</creator><creator>Li, Xiao-Ya</creator><creator>Ma, Shu-Fang</creator><creator>Xu, Bing-She</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6689-6300</orcidid><orcidid>https://orcid.org/0000-0003-4845-3167</orcidid><orcidid>https://orcid.org/0009-0008-8357-0776</orcidid><orcidid>https://orcid.org/0000-0003-0726-0924</orcidid><orcidid>https://orcid.org/0000-0002-3808-2828</orcidid><orcidid>https://orcid.org/0000-0002-5229-7665</orcidid></search><sort><creationdate>20250101</creationdate><title>Performance Enhancement of InGaN Laser Photovoltaic Cell With AlGaN Strain Compensation Layer Irradiated by 450 nm Laser</title><author>Shan, Heng-Sheng ; Wang, Yi-Xin ; Li, Cheng-Ke ; Wang, Ning ; Li, Xiao-Ya ; Ma, Shu-Fang ; Xu, Bing-She</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c179t-28c6de6cc931f40610a7a4211a88a78191c3a0d9551437e69e391094661ec0113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>AlGaN strain compensation layer (SCL)</topic><topic>Aluminum gallium nitride</topic><topic>Aluminum gallium nitrides</topic><topic>Compensation</topic><topic>Compressive properties</topic><topic>Design optimization</topic><topic>Diffraction patterns</topic><topic>Efficiency</topic><topic>Energy conversion efficiency</topic><topic>Gallium nitrides</topic><topic>III-V semiconductor materials</topic><topic>Indium gallium nitrides</topic><topic>InGaN/ GaN multiple quantum well (MQW)</topic><topic>Insertion</topic><topic>interface steepness</topic><topic>laser photovoltaic cell (LPVC)</topic><topic>Lasers</topic><topic>Light emitting diodes</topic><topic>Performance evaluation</topic><topic>photoelectric conversion efficiency</topic><topic>Photoelectricity</topic><topic>Photoluminescence</topic><topic>Photovoltaic cells</topic><topic>Quantum well devices</topic><topic>Raman spectroscopy</topic><topic>Sapphire</topic><topic>Slopes</topic><topic>Strain</topic><topic>Strain analysis</topic><topic>Strain relaxation</topic><topic>Stress</topic><topic>Substrates</topic><topic>Wide band gap semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shan, Heng-Sheng</creatorcontrib><creatorcontrib>Wang, Yi-Xin</creatorcontrib><creatorcontrib>Li, Cheng-Ke</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Li, Xiao-Ya</creatorcontrib><creatorcontrib>Ma, Shu-Fang</creatorcontrib><creatorcontrib>Xu, Bing-She</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shan, Heng-Sheng</au><au>Wang, Yi-Xin</au><au>Li, Cheng-Ke</au><au>Wang, Ning</au><au>Li, Xiao-Ya</au><au>Ma, Shu-Fang</au><au>Xu, Bing-She</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Enhancement of InGaN Laser Photovoltaic Cell With AlGaN Strain Compensation Layer Irradiated by 450 nm Laser</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2025-01-01</date><risdate>2025</risdate><volume>15</volume><issue>1</issue><spage>105</spage><epage>109</epage><pages>105-109</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>A high-efficiency indium gallium nitride (InGaN) laser photovoltaic cell (LPVC) was demonstrated to achieve a photoelectric conversion efficiency (η) of 23.09% by incorporating an AlGaN strain compensation layer (SCL) grown on a (0001)-oriented patterned sapphire substrate (PSS). The photoluminescence spectra confirm that the peak splitting is reduced after the insertion of AlGaN SCL, indicating a more uniform distribution of In. In addition, the full width at half maximum of the sample is narrowed, indicating that the crystal quality is improved after the insertion of AlGaN SCL. The X-ray diffraction analysis reveals the effective modulation of strain relaxation in InGaN materials by the AlGaN SCL, enhancing steepness of the interface between the well and the barrier in the active region compared with materials without the AlGaN SCL. Furthermore, Raman analysis shows an additional release of GaN compressive stress in InGaN materials, providing full validation for the stress regulation model from introducing the AlGaN SCL. Finally, introducing material parameters into Silvaco software resulted in simulation and experimental errors of less than 2%, the critical role of SCL in efficiency improvement is validated. Valuable insights on optimizing device design for high-efficiency InGaN LPVCs are provided.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2024.3495024</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6689-6300</orcidid><orcidid>https://orcid.org/0000-0003-4845-3167</orcidid><orcidid>https://orcid.org/0009-0008-8357-0776</orcidid><orcidid>https://orcid.org/0000-0003-0726-0924</orcidid><orcidid>https://orcid.org/0000-0002-3808-2828</orcidid><orcidid>https://orcid.org/0000-0002-5229-7665</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2156-3381
ispartof IEEE journal of photovoltaics, 2025-01, Vol.15 (1), p.105-109
issn 2156-3381
2156-3403
language eng
recordid cdi_ieee_primary_10764776
source IEEE Electronic Library (IEL) Journals
subjects AlGaN strain compensation layer (SCL)
Aluminum gallium nitride
Aluminum gallium nitrides
Compensation
Compressive properties
Design optimization
Diffraction patterns
Efficiency
Energy conversion efficiency
Gallium nitrides
III-V semiconductor materials
Indium gallium nitrides
InGaN/ GaN multiple quantum well (MQW)
Insertion
interface steepness
laser photovoltaic cell (LPVC)
Lasers
Light emitting diodes
Performance evaluation
photoelectric conversion efficiency
Photoelectricity
Photoluminescence
Photovoltaic cells
Quantum well devices
Raman spectroscopy
Sapphire
Slopes
Strain
Strain analysis
Strain relaxation
Stress
Substrates
Wide band gap semiconductors
title Performance Enhancement of InGaN Laser Photovoltaic Cell With AlGaN Strain Compensation Layer Irradiated by 450 nm Laser
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A33%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Enhancement%20of%20InGaN%20Laser%20Photovoltaic%20Cell%20With%20AlGaN%20Strain%20Compensation%20Layer%20Irradiated%20by%20450%20nm%20Laser&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Shan,%20Heng-Sheng&rft.date=2025-01-01&rft.volume=15&rft.issue=1&rft.spage=105&rft.epage=109&rft.pages=105-109&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2024.3495024&rft_dat=%3Cproquest_ieee_%3E3149094465%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c179t-28c6de6cc931f40610a7a4211a88a78191c3a0d9551437e69e391094661ec0113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3149094465&rft_id=info:pmid/&rft_ieee_id=10764776&rfr_iscdi=true