Loading…

Reconstruction of Interior Velocity in the Southern Pacific Ocean Using Satellite and Argo Data

Ocean velocities are essential for understanding how the ocean influences and responds to climate dynamics, making their accurate reconstruction crucial for both climate modeling and predictions. However, reconstructing interior ocean velocities remains a significant challenge due to the sparse dist...

Full description

Saved in:
Bibliographic Details
Published in:IEEE geoscience and remote sensing letters 2025, Vol.22, p.1-5
Main Authors: Xiang, Liang, Xu, Yongsheng, Sun, Haiwei, Zhang, Qingjun, Kong, Weiya, Zhang, Lin, Zhang, Xiangguang, Huang, Chao, Zhao, Dandan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c148t-2c08fcdac7b031e1a69aa5709782dcc83c05cb116aaa21beca1eb703d3218c593
container_end_page 5
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume 22
creator Xiang, Liang
Xu, Yongsheng
Sun, Haiwei
Zhang, Qingjun
Kong, Weiya
Zhang, Lin
Zhang, Xiangguang
Huang, Chao
Zhao, Dandan
description Ocean velocities are essential for understanding how the ocean influences and responds to climate dynamics, making their accurate reconstruction crucial for both climate modeling and predictions. However, reconstructing interior ocean velocities remains a significant challenge due to the sparse distribution of velocity observations and the ocean's complex dynamics. In this study, we introduce an efficient methodology for reconstructing interior ocean velocities by combining sea surface satellite data-including sea surface height (SSH), temperature, wind, and current-with Argo velocity observations, using the dynamic mode decomposition (DMD) technique. DMD offers the advantage of reducing the dimensionality of interior velocity fields, helping to address the limitations caused by sparse observations. The reconstructed velocity for the Southern Pacific Ocean (SPO) was validated against Argo and acoustic Doppler current profiler (ADCP) velocities, showing a strong correlation than GLORYS12V1 velocities. In particular, the reconstructed velocities have a mean correlation coefficient of 0.78 for the zonal component and 0.74 for the meridional component above 1000 m. Additionally, the reconstructed flow field exhibits a coherent pattern that closely aligns with the eddies observed in SSH. This research significantly contributes to the Global Ocean Monitoring and Observing Program by enhancing both the accuracy and resolution of ocean velocity measurements.
doi_str_mv 10.1109/LGRS.2024.3508023
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10770283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10770283</ieee_id><sourcerecordid>10_1109_LGRS_2024_3508023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-2c08fcdac7b031e1a69aa5709782dcc83c05cb116aaa21beca1eb703d3218c593</originalsourceid><addsrcrecordid>eNpNkM1OAjEUhRujiYg-gImLvsBgfyjtLAkqkpBgQIy75s6dDtaMremUBW8vE1i4OmdxvrP4CLnnbMQ5Kx-X8_VmJJgYj6Rihgl5QQZcKVMwpfll38eqUKX5vCY3XffNjktj9IDYtcMYupz2mH0MNDZ0EbJLPib64dqIPh-oDzR_ObqJ-2OkQN8AfeORrtBBoNvOhx3dQHZt67OjEGo6TbtInyDDLblqoO3c3TmHZPvy_D57LZar-WI2XRbIxyYXAplpsAbUFZPccZiUAEqzUhtRIxqJTGHF-QQABK8cAneVZrKWghtUpRwSfvrFFLsuucb-Jv8D6WA5s70h2xuyvSF7NnRkHk6Md87922vNhJHyD2-CY7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reconstruction of Interior Velocity in the Southern Pacific Ocean Using Satellite and Argo Data</title><source>IEEE Xplore (Online service)</source><creator>Xiang, Liang ; Xu, Yongsheng ; Sun, Haiwei ; Zhang, Qingjun ; Kong, Weiya ; Zhang, Lin ; Zhang, Xiangguang ; Huang, Chao ; Zhao, Dandan</creator><creatorcontrib>Xiang, Liang ; Xu, Yongsheng ; Sun, Haiwei ; Zhang, Qingjun ; Kong, Weiya ; Zhang, Lin ; Zhang, Xiangguang ; Huang, Chao ; Zhao, Dandan</creatorcontrib><description>Ocean velocities are essential for understanding how the ocean influences and responds to climate dynamics, making their accurate reconstruction crucial for both climate modeling and predictions. However, reconstructing interior ocean velocities remains a significant challenge due to the sparse distribution of velocity observations and the ocean's complex dynamics. In this study, we introduce an efficient methodology for reconstructing interior ocean velocities by combining sea surface satellite data-including sea surface height (SSH), temperature, wind, and current-with Argo velocity observations, using the dynamic mode decomposition (DMD) technique. DMD offers the advantage of reducing the dimensionality of interior velocity fields, helping to address the limitations caused by sparse observations. The reconstructed velocity for the Southern Pacific Ocean (SPO) was validated against Argo and acoustic Doppler current profiler (ADCP) velocities, showing a strong correlation than GLORYS12V1 velocities. In particular, the reconstructed velocities have a mean correlation coefficient of 0.78 for the zonal component and 0.74 for the meridional component above 1000 m. Additionally, the reconstructed flow field exhibits a coherent pattern that closely aligns with the eddies observed in SSH. This research significantly contributes to the Global Ocean Monitoring and Observing Program by enhancing both the accuracy and resolution of ocean velocity measurements.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2024.3508023</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Dynamical modes decomposition ; interior ocean velocity ; machine learning ; Meters ; Ocean temperature ; Oceans ; Radio frequency ; remote sensing ; Salinity (geophysical) ; Satellites ; Sea surface ; Surface reconstruction ; Surface topography</subject><ispartof>IEEE geoscience and remote sensing letters, 2025, Vol.22, p.1-5</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-2c08fcdac7b031e1a69aa5709782dcc83c05cb116aaa21beca1eb703d3218c593</cites><orcidid>0009-0008-1617-4327 ; 0000-0003-3003-0393 ; 0000-0001-5285-5738 ; 0000-0002-5798-2530 ; 0000-0001-9173-3354 ; 0000-0003-1588-7911</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10770283$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,4009,27902,27903,27904,54775</link.rule.ids></links><search><creatorcontrib>Xiang, Liang</creatorcontrib><creatorcontrib>Xu, Yongsheng</creatorcontrib><creatorcontrib>Sun, Haiwei</creatorcontrib><creatorcontrib>Zhang, Qingjun</creatorcontrib><creatorcontrib>Kong, Weiya</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Zhang, Xiangguang</creatorcontrib><creatorcontrib>Huang, Chao</creatorcontrib><creatorcontrib>Zhao, Dandan</creatorcontrib><title>Reconstruction of Interior Velocity in the Southern Pacific Ocean Using Satellite and Argo Data</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Ocean velocities are essential for understanding how the ocean influences and responds to climate dynamics, making their accurate reconstruction crucial for both climate modeling and predictions. However, reconstructing interior ocean velocities remains a significant challenge due to the sparse distribution of velocity observations and the ocean's complex dynamics. In this study, we introduce an efficient methodology for reconstructing interior ocean velocities by combining sea surface satellite data-including sea surface height (SSH), temperature, wind, and current-with Argo velocity observations, using the dynamic mode decomposition (DMD) technique. DMD offers the advantage of reducing the dimensionality of interior velocity fields, helping to address the limitations caused by sparse observations. The reconstructed velocity for the Southern Pacific Ocean (SPO) was validated against Argo and acoustic Doppler current profiler (ADCP) velocities, showing a strong correlation than GLORYS12V1 velocities. In particular, the reconstructed velocities have a mean correlation coefficient of 0.78 for the zonal component and 0.74 for the meridional component above 1000 m. Additionally, the reconstructed flow field exhibits a coherent pattern that closely aligns with the eddies observed in SSH. This research significantly contributes to the Global Ocean Monitoring and Observing Program by enhancing both the accuracy and resolution of ocean velocity measurements.</description><subject>Accuracy</subject><subject>Dynamical modes decomposition</subject><subject>interior ocean velocity</subject><subject>machine learning</subject><subject>Meters</subject><subject>Ocean temperature</subject><subject>Oceans</subject><subject>Radio frequency</subject><subject>remote sensing</subject><subject>Salinity (geophysical)</subject><subject>Satellites</subject><subject>Sea surface</subject><subject>Surface reconstruction</subject><subject>Surface topography</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpNkM1OAjEUhRujiYg-gImLvsBgfyjtLAkqkpBgQIy75s6dDtaMremUBW8vE1i4OmdxvrP4CLnnbMQ5Kx-X8_VmJJgYj6Rihgl5QQZcKVMwpfll38eqUKX5vCY3XffNjktj9IDYtcMYupz2mH0MNDZ0EbJLPib64dqIPh-oDzR_ObqJ-2OkQN8AfeORrtBBoNvOhx3dQHZt67OjEGo6TbtInyDDLblqoO3c3TmHZPvy_D57LZar-WI2XRbIxyYXAplpsAbUFZPccZiUAEqzUhtRIxqJTGHF-QQABK8cAneVZrKWghtUpRwSfvrFFLsuucb-Jv8D6WA5s70h2xuyvSF7NnRkHk6Md87922vNhJHyD2-CY7w</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Xiang, Liang</creator><creator>Xu, Yongsheng</creator><creator>Sun, Haiwei</creator><creator>Zhang, Qingjun</creator><creator>Kong, Weiya</creator><creator>Zhang, Lin</creator><creator>Zhang, Xiangguang</creator><creator>Huang, Chao</creator><creator>Zhao, Dandan</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0008-1617-4327</orcidid><orcidid>https://orcid.org/0000-0003-3003-0393</orcidid><orcidid>https://orcid.org/0000-0001-5285-5738</orcidid><orcidid>https://orcid.org/0000-0002-5798-2530</orcidid><orcidid>https://orcid.org/0000-0001-9173-3354</orcidid><orcidid>https://orcid.org/0000-0003-1588-7911</orcidid></search><sort><creationdate>2025</creationdate><title>Reconstruction of Interior Velocity in the Southern Pacific Ocean Using Satellite and Argo Data</title><author>Xiang, Liang ; Xu, Yongsheng ; Sun, Haiwei ; Zhang, Qingjun ; Kong, Weiya ; Zhang, Lin ; Zhang, Xiangguang ; Huang, Chao ; Zhao, Dandan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-2c08fcdac7b031e1a69aa5709782dcc83c05cb116aaa21beca1eb703d3218c593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Accuracy</topic><topic>Dynamical modes decomposition</topic><topic>interior ocean velocity</topic><topic>machine learning</topic><topic>Meters</topic><topic>Ocean temperature</topic><topic>Oceans</topic><topic>Radio frequency</topic><topic>remote sensing</topic><topic>Salinity (geophysical)</topic><topic>Satellites</topic><topic>Sea surface</topic><topic>Surface reconstruction</topic><topic>Surface topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Liang</creatorcontrib><creatorcontrib>Xu, Yongsheng</creatorcontrib><creatorcontrib>Sun, Haiwei</creatorcontrib><creatorcontrib>Zhang, Qingjun</creatorcontrib><creatorcontrib>Kong, Weiya</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Zhang, Xiangguang</creatorcontrib><creatorcontrib>Huang, Chao</creatorcontrib><creatorcontrib>Zhao, Dandan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Liang</au><au>Xu, Yongsheng</au><au>Sun, Haiwei</au><au>Zhang, Qingjun</au><au>Kong, Weiya</au><au>Zhang, Lin</au><au>Zhang, Xiangguang</au><au>Huang, Chao</au><au>Zhao, Dandan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reconstruction of Interior Velocity in the Southern Pacific Ocean Using Satellite and Argo Data</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2025</date><risdate>2025</risdate><volume>22</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Ocean velocities are essential for understanding how the ocean influences and responds to climate dynamics, making their accurate reconstruction crucial for both climate modeling and predictions. However, reconstructing interior ocean velocities remains a significant challenge due to the sparse distribution of velocity observations and the ocean's complex dynamics. In this study, we introduce an efficient methodology for reconstructing interior ocean velocities by combining sea surface satellite data-including sea surface height (SSH), temperature, wind, and current-with Argo velocity observations, using the dynamic mode decomposition (DMD) technique. DMD offers the advantage of reducing the dimensionality of interior velocity fields, helping to address the limitations caused by sparse observations. The reconstructed velocity for the Southern Pacific Ocean (SPO) was validated against Argo and acoustic Doppler current profiler (ADCP) velocities, showing a strong correlation than GLORYS12V1 velocities. In particular, the reconstructed velocities have a mean correlation coefficient of 0.78 for the zonal component and 0.74 for the meridional component above 1000 m. Additionally, the reconstructed flow field exhibits a coherent pattern that closely aligns with the eddies observed in SSH. This research significantly contributes to the Global Ocean Monitoring and Observing Program by enhancing both the accuracy and resolution of ocean velocity measurements.</abstract><pub>IEEE</pub><doi>10.1109/LGRS.2024.3508023</doi><tpages>5</tpages><orcidid>https://orcid.org/0009-0008-1617-4327</orcidid><orcidid>https://orcid.org/0000-0003-3003-0393</orcidid><orcidid>https://orcid.org/0000-0001-5285-5738</orcidid><orcidid>https://orcid.org/0000-0002-5798-2530</orcidid><orcidid>https://orcid.org/0000-0001-9173-3354</orcidid><orcidid>https://orcid.org/0000-0003-1588-7911</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2025, Vol.22, p.1-5
issn 1545-598X
1558-0571
language eng
recordid cdi_ieee_primary_10770283
source IEEE Xplore (Online service)
subjects Accuracy
Dynamical modes decomposition
interior ocean velocity
machine learning
Meters
Ocean temperature
Oceans
Radio frequency
remote sensing
Salinity (geophysical)
Satellites
Sea surface
Surface reconstruction
Surface topography
title Reconstruction of Interior Velocity in the Southern Pacific Ocean Using Satellite and Argo Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A57%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reconstruction%20of%20Interior%20Velocity%20in%20the%20Southern%20Pacific%20Ocean%20Using%20Satellite%20and%20Argo%20Data&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Xiang,%20Liang&rft.date=2025&rft.volume=22&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2024.3508023&rft_dat=%3Ccrossref_ieee_%3E10_1109_LGRS_2024_3508023%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c148t-2c08fcdac7b031e1a69aa5709782dcc83c05cb116aaa21beca1eb703d3218c593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10770283&rfr_iscdi=true