Loading…

Comparative Analysis of CLAHE and VOI LUT for Enhanced Mammogram Contrast in Tumor Detection

This study presents a comparative analysis of Contrast Limited Adaptive Histogram Equalization (CLAHE) and Value of Interest Look-Up Table (VOI LUT) as preprocessing methods for enhancing mammogram contrast to improve tumor detection. Using a dataset of 928 mammograms (464 BI-RADS 1 and 464 BI-RADS...

Full description

Saved in:
Bibliographic Details
Main Authors: Leon-Sanchez, Mayra Adriana, Hernandez-Rodriguez, Yazmin Mariela, Cigarroa-Mayorga, Oscar Eduardo, Bayareh-Mancilla, Rafael
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 7
container_issue
container_start_page 1
container_title
container_volume
creator Leon-Sanchez, Mayra Adriana
Hernandez-Rodriguez, Yazmin Mariela
Cigarroa-Mayorga, Oscar Eduardo
Bayareh-Mancilla, Rafael
description This study presents a comparative analysis of Contrast Limited Adaptive Histogram Equalization (CLAHE) and Value of Interest Look-Up Table (VOI LUT) as preprocessing methods for enhancing mammogram contrast to improve tumor detection. Using a dataset of 928 mammograms (464 BI-RADS 1 and 464 BI-RADS 4 and 5), we evaluated the performance of these methods in detecting tumors by extracting texture features using the Gray-Level Co-occurrence Matrix (GLCM) and classifying them with a Support Vector Machine (SVM). The results indicate that CLAHE slightly outperforms VOI LUT, with classification metrics showing precision, recall, F1-score, and accuracy of 0.57 for CLAHE compared to 0.55 for VOI LUT. These findings suggest that CLAHE may be more effective in enhancing mammogram textures, thereby improving the detection and classification of breast tumors. Future work should explore additional preprocessing techniques and classification algorithms to further validate and improve these results.
doi_str_mv 10.1109/CCE62852.2024.10771012
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10771012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10771012</ieee_id><sourcerecordid>10771012</sourcerecordid><originalsourceid>FETCH-ieee_primary_107710123</originalsourceid><addsrcrecordid>eNqFjsFKAzEURaNQaNH5g1LeD3R8SWaSzrLEkQoVN6MroTzajEaapCRR6N_bha7d3LM4Z3EZW3CsOcfuzpheiVUraoGiqTlqzZGLK1Z1ulvJFqXWbdNes5lQjVhKrdSUVTl_IqLk3WXUjL2Z6E-UqLhvC-tAx3N2GeIIZrve9EDhAK_Pj7B9GWCMCfrwQWFvD_BE3sf3RB5MDCVRLuACDF_-Et3bYvfFxXDLJiMds61-ecPmD_1gNktnrd2dkvOUzru_4_If_QP1hUUF</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Comparative Analysis of CLAHE and VOI LUT for Enhanced Mammogram Contrast in Tumor Detection</title><source>IEEE Xplore All Conference Series</source><creator>Leon-Sanchez, Mayra Adriana ; Hernandez-Rodriguez, Yazmin Mariela ; Cigarroa-Mayorga, Oscar Eduardo ; Bayareh-Mancilla, Rafael</creator><creatorcontrib>Leon-Sanchez, Mayra Adriana ; Hernandez-Rodriguez, Yazmin Mariela ; Cigarroa-Mayorga, Oscar Eduardo ; Bayareh-Mancilla, Rafael</creatorcontrib><description>This study presents a comparative analysis of Contrast Limited Adaptive Histogram Equalization (CLAHE) and Value of Interest Look-Up Table (VOI LUT) as preprocessing methods for enhancing mammogram contrast to improve tumor detection. Using a dataset of 928 mammograms (464 BI-RADS 1 and 464 BI-RADS 4 and 5), we evaluated the performance of these methods in detecting tumors by extracting texture features using the Gray-Level Co-occurrence Matrix (GLCM) and classifying them with a Support Vector Machine (SVM). The results indicate that CLAHE slightly outperforms VOI LUT, with classification metrics showing precision, recall, F1-score, and accuracy of 0.57 for CLAHE compared to 0.55 for VOI LUT. These findings suggest that CLAHE may be more effective in enhancing mammogram textures, thereby improving the detection and classification of breast tumors. Future work should explore additional preprocessing techniques and classification algorithms to further validate and improve these results.</description><identifier>EISSN: 2642-3766</identifier><identifier>EISBN: 9798350377545</identifier><identifier>DOI: 10.1109/CCE62852.2024.10771012</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Clinical trials ; Electrical engineering computing ; Feature extraction ; GLCM Texture Analysis ; Histograms ; Image classification ; Mammogram Preprocessing ; Mammography ; Measurement ; Support vector machines ; SVM Classification ; Table lookup ; Tumor Detection</subject><ispartof>International Conference on Electrical Engineering, Computing Science, and Automatic Control (Online), 2024, p.1-7</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10771012$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10771012$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Leon-Sanchez, Mayra Adriana</creatorcontrib><creatorcontrib>Hernandez-Rodriguez, Yazmin Mariela</creatorcontrib><creatorcontrib>Cigarroa-Mayorga, Oscar Eduardo</creatorcontrib><creatorcontrib>Bayareh-Mancilla, Rafael</creatorcontrib><title>Comparative Analysis of CLAHE and VOI LUT for Enhanced Mammogram Contrast in Tumor Detection</title><title>International Conference on Electrical Engineering, Computing Science, and Automatic Control (Online)</title><addtitle>CCE</addtitle><description>This study presents a comparative analysis of Contrast Limited Adaptive Histogram Equalization (CLAHE) and Value of Interest Look-Up Table (VOI LUT) as preprocessing methods for enhancing mammogram contrast to improve tumor detection. Using a dataset of 928 mammograms (464 BI-RADS 1 and 464 BI-RADS 4 and 5), we evaluated the performance of these methods in detecting tumors by extracting texture features using the Gray-Level Co-occurrence Matrix (GLCM) and classifying them with a Support Vector Machine (SVM). The results indicate that CLAHE slightly outperforms VOI LUT, with classification metrics showing precision, recall, F1-score, and accuracy of 0.57 for CLAHE compared to 0.55 for VOI LUT. These findings suggest that CLAHE may be more effective in enhancing mammogram textures, thereby improving the detection and classification of breast tumors. Future work should explore additional preprocessing techniques and classification algorithms to further validate and improve these results.</description><subject>Accuracy</subject><subject>Clinical trials</subject><subject>Electrical engineering computing</subject><subject>Feature extraction</subject><subject>GLCM Texture Analysis</subject><subject>Histograms</subject><subject>Image classification</subject><subject>Mammogram Preprocessing</subject><subject>Mammography</subject><subject>Measurement</subject><subject>Support vector machines</subject><subject>SVM Classification</subject><subject>Table lookup</subject><subject>Tumor Detection</subject><issn>2642-3766</issn><isbn>9798350377545</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFjsFKAzEURaNQaNH5g1LeD3R8SWaSzrLEkQoVN6MroTzajEaapCRR6N_bha7d3LM4Z3EZW3CsOcfuzpheiVUraoGiqTlqzZGLK1Z1ulvJFqXWbdNes5lQjVhKrdSUVTl_IqLk3WXUjL2Z6E-UqLhvC-tAx3N2GeIIZrve9EDhAK_Pj7B9GWCMCfrwQWFvD_BE3sf3RB5MDCVRLuACDF_-Et3bYvfFxXDLJiMds61-ecPmD_1gNktnrd2dkvOUzru_4_If_QP1hUUF</recordid><startdate>20241023</startdate><enddate>20241023</enddate><creator>Leon-Sanchez, Mayra Adriana</creator><creator>Hernandez-Rodriguez, Yazmin Mariela</creator><creator>Cigarroa-Mayorga, Oscar Eduardo</creator><creator>Bayareh-Mancilla, Rafael</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20241023</creationdate><title>Comparative Analysis of CLAHE and VOI LUT for Enhanced Mammogram Contrast in Tumor Detection</title><author>Leon-Sanchez, Mayra Adriana ; Hernandez-Rodriguez, Yazmin Mariela ; Cigarroa-Mayorga, Oscar Eduardo ; Bayareh-Mancilla, Rafael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_107710123</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Clinical trials</topic><topic>Electrical engineering computing</topic><topic>Feature extraction</topic><topic>GLCM Texture Analysis</topic><topic>Histograms</topic><topic>Image classification</topic><topic>Mammogram Preprocessing</topic><topic>Mammography</topic><topic>Measurement</topic><topic>Support vector machines</topic><topic>SVM Classification</topic><topic>Table lookup</topic><topic>Tumor Detection</topic><toplevel>online_resources</toplevel><creatorcontrib>Leon-Sanchez, Mayra Adriana</creatorcontrib><creatorcontrib>Hernandez-Rodriguez, Yazmin Mariela</creatorcontrib><creatorcontrib>Cigarroa-Mayorga, Oscar Eduardo</creatorcontrib><creatorcontrib>Bayareh-Mancilla, Rafael</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Leon-Sanchez, Mayra Adriana</au><au>Hernandez-Rodriguez, Yazmin Mariela</au><au>Cigarroa-Mayorga, Oscar Eduardo</au><au>Bayareh-Mancilla, Rafael</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Comparative Analysis of CLAHE and VOI LUT for Enhanced Mammogram Contrast in Tumor Detection</atitle><btitle>International Conference on Electrical Engineering, Computing Science, and Automatic Control (Online)</btitle><stitle>CCE</stitle><date>2024-10-23</date><risdate>2024</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><eissn>2642-3766</eissn><eisbn>9798350377545</eisbn><abstract>This study presents a comparative analysis of Contrast Limited Adaptive Histogram Equalization (CLAHE) and Value of Interest Look-Up Table (VOI LUT) as preprocessing methods for enhancing mammogram contrast to improve tumor detection. Using a dataset of 928 mammograms (464 BI-RADS 1 and 464 BI-RADS 4 and 5), we evaluated the performance of these methods in detecting tumors by extracting texture features using the Gray-Level Co-occurrence Matrix (GLCM) and classifying them with a Support Vector Machine (SVM). The results indicate that CLAHE slightly outperforms VOI LUT, with classification metrics showing precision, recall, F1-score, and accuracy of 0.57 for CLAHE compared to 0.55 for VOI LUT. These findings suggest that CLAHE may be more effective in enhancing mammogram textures, thereby improving the detection and classification of breast tumors. Future work should explore additional preprocessing techniques and classification algorithms to further validate and improve these results.</abstract><pub>IEEE</pub><doi>10.1109/CCE62852.2024.10771012</doi></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2642-3766
ispartof International Conference on Electrical Engineering, Computing Science, and Automatic Control (Online), 2024, p.1-7
issn 2642-3766
language eng
recordid cdi_ieee_primary_10771012
source IEEE Xplore All Conference Series
subjects Accuracy
Clinical trials
Electrical engineering computing
Feature extraction
GLCM Texture Analysis
Histograms
Image classification
Mammogram Preprocessing
Mammography
Measurement
Support vector machines
SVM Classification
Table lookup
Tumor Detection
title Comparative Analysis of CLAHE and VOI LUT for Enhanced Mammogram Contrast in Tumor Detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A11%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Comparative%20Analysis%20of%20CLAHE%20and%20VOI%20LUT%20for%20Enhanced%20Mammogram%20Contrast%20in%20Tumor%20Detection&rft.btitle=International%20Conference%20on%20Electrical%20Engineering,%20Computing%20Science,%20and%20Automatic%20Control%20(Online)&rft.au=Leon-Sanchez,%20Mayra%20Adriana&rft.date=2024-10-23&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.eissn=2642-3766&rft_id=info:doi/10.1109/CCE62852.2024.10771012&rft.eisbn=9798350377545&rft_dat=%3Cieee_CHZPO%3E10771012%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_107710123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10771012&rfr_iscdi=true