Loading…
Comparative Analysis of CLAHE and VOI LUT for Enhanced Mammogram Contrast in Tumor Detection
This study presents a comparative analysis of Contrast Limited Adaptive Histogram Equalization (CLAHE) and Value of Interest Look-Up Table (VOI LUT) as preprocessing methods for enhancing mammogram contrast to improve tumor detection. Using a dataset of 928 mammograms (464 BI-RADS 1 and 464 BI-RADS...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 7 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Leon-Sanchez, Mayra Adriana Hernandez-Rodriguez, Yazmin Mariela Cigarroa-Mayorga, Oscar Eduardo Bayareh-Mancilla, Rafael |
description | This study presents a comparative analysis of Contrast Limited Adaptive Histogram Equalization (CLAHE) and Value of Interest Look-Up Table (VOI LUT) as preprocessing methods for enhancing mammogram contrast to improve tumor detection. Using a dataset of 928 mammograms (464 BI-RADS 1 and 464 BI-RADS 4 and 5), we evaluated the performance of these methods in detecting tumors by extracting texture features using the Gray-Level Co-occurrence Matrix (GLCM) and classifying them with a Support Vector Machine (SVM). The results indicate that CLAHE slightly outperforms VOI LUT, with classification metrics showing precision, recall, F1-score, and accuracy of 0.57 for CLAHE compared to 0.55 for VOI LUT. These findings suggest that CLAHE may be more effective in enhancing mammogram textures, thereby improving the detection and classification of breast tumors. Future work should explore additional preprocessing techniques and classification algorithms to further validate and improve these results. |
doi_str_mv | 10.1109/CCE62852.2024.10771012 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10771012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10771012</ieee_id><sourcerecordid>10771012</sourcerecordid><originalsourceid>FETCH-ieee_primary_107710123</originalsourceid><addsrcrecordid>eNqFjsFKAzEURaNQaNH5g1LeD3R8SWaSzrLEkQoVN6MroTzajEaapCRR6N_bha7d3LM4Z3EZW3CsOcfuzpheiVUraoGiqTlqzZGLK1Z1ulvJFqXWbdNes5lQjVhKrdSUVTl_IqLk3WXUjL2Z6E-UqLhvC-tAx3N2GeIIZrve9EDhAK_Pj7B9GWCMCfrwQWFvD_BE3sf3RB5MDCVRLuACDF_-Et3bYvfFxXDLJiMds61-ecPmD_1gNktnrd2dkvOUzru_4_If_QP1hUUF</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Comparative Analysis of CLAHE and VOI LUT for Enhanced Mammogram Contrast in Tumor Detection</title><source>IEEE Xplore All Conference Series</source><creator>Leon-Sanchez, Mayra Adriana ; Hernandez-Rodriguez, Yazmin Mariela ; Cigarroa-Mayorga, Oscar Eduardo ; Bayareh-Mancilla, Rafael</creator><creatorcontrib>Leon-Sanchez, Mayra Adriana ; Hernandez-Rodriguez, Yazmin Mariela ; Cigarroa-Mayorga, Oscar Eduardo ; Bayareh-Mancilla, Rafael</creatorcontrib><description>This study presents a comparative analysis of Contrast Limited Adaptive Histogram Equalization (CLAHE) and Value of Interest Look-Up Table (VOI LUT) as preprocessing methods for enhancing mammogram contrast to improve tumor detection. Using a dataset of 928 mammograms (464 BI-RADS 1 and 464 BI-RADS 4 and 5), we evaluated the performance of these methods in detecting tumors by extracting texture features using the Gray-Level Co-occurrence Matrix (GLCM) and classifying them with a Support Vector Machine (SVM). The results indicate that CLAHE slightly outperforms VOI LUT, with classification metrics showing precision, recall, F1-score, and accuracy of 0.57 for CLAHE compared to 0.55 for VOI LUT. These findings suggest that CLAHE may be more effective in enhancing mammogram textures, thereby improving the detection and classification of breast tumors. Future work should explore additional preprocessing techniques and classification algorithms to further validate and improve these results.</description><identifier>EISSN: 2642-3766</identifier><identifier>EISBN: 9798350377545</identifier><identifier>DOI: 10.1109/CCE62852.2024.10771012</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Clinical trials ; Electrical engineering computing ; Feature extraction ; GLCM Texture Analysis ; Histograms ; Image classification ; Mammogram Preprocessing ; Mammography ; Measurement ; Support vector machines ; SVM Classification ; Table lookup ; Tumor Detection</subject><ispartof>International Conference on Electrical Engineering, Computing Science, and Automatic Control (Online), 2024, p.1-7</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10771012$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10771012$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Leon-Sanchez, Mayra Adriana</creatorcontrib><creatorcontrib>Hernandez-Rodriguez, Yazmin Mariela</creatorcontrib><creatorcontrib>Cigarroa-Mayorga, Oscar Eduardo</creatorcontrib><creatorcontrib>Bayareh-Mancilla, Rafael</creatorcontrib><title>Comparative Analysis of CLAHE and VOI LUT for Enhanced Mammogram Contrast in Tumor Detection</title><title>International Conference on Electrical Engineering, Computing Science, and Automatic Control (Online)</title><addtitle>CCE</addtitle><description>This study presents a comparative analysis of Contrast Limited Adaptive Histogram Equalization (CLAHE) and Value of Interest Look-Up Table (VOI LUT) as preprocessing methods for enhancing mammogram contrast to improve tumor detection. Using a dataset of 928 mammograms (464 BI-RADS 1 and 464 BI-RADS 4 and 5), we evaluated the performance of these methods in detecting tumors by extracting texture features using the Gray-Level Co-occurrence Matrix (GLCM) and classifying them with a Support Vector Machine (SVM). The results indicate that CLAHE slightly outperforms VOI LUT, with classification metrics showing precision, recall, F1-score, and accuracy of 0.57 for CLAHE compared to 0.55 for VOI LUT. These findings suggest that CLAHE may be more effective in enhancing mammogram textures, thereby improving the detection and classification of breast tumors. Future work should explore additional preprocessing techniques and classification algorithms to further validate and improve these results.</description><subject>Accuracy</subject><subject>Clinical trials</subject><subject>Electrical engineering computing</subject><subject>Feature extraction</subject><subject>GLCM Texture Analysis</subject><subject>Histograms</subject><subject>Image classification</subject><subject>Mammogram Preprocessing</subject><subject>Mammography</subject><subject>Measurement</subject><subject>Support vector machines</subject><subject>SVM Classification</subject><subject>Table lookup</subject><subject>Tumor Detection</subject><issn>2642-3766</issn><isbn>9798350377545</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFjsFKAzEURaNQaNH5g1LeD3R8SWaSzrLEkQoVN6MroTzajEaapCRR6N_bha7d3LM4Z3EZW3CsOcfuzpheiVUraoGiqTlqzZGLK1Z1ulvJFqXWbdNes5lQjVhKrdSUVTl_IqLk3WXUjL2Z6E-UqLhvC-tAx3N2GeIIZrve9EDhAK_Pj7B9GWCMCfrwQWFvD_BE3sf3RB5MDCVRLuACDF_-Et3bYvfFxXDLJiMds61-ecPmD_1gNktnrd2dkvOUzru_4_If_QP1hUUF</recordid><startdate>20241023</startdate><enddate>20241023</enddate><creator>Leon-Sanchez, Mayra Adriana</creator><creator>Hernandez-Rodriguez, Yazmin Mariela</creator><creator>Cigarroa-Mayorga, Oscar Eduardo</creator><creator>Bayareh-Mancilla, Rafael</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20241023</creationdate><title>Comparative Analysis of CLAHE and VOI LUT for Enhanced Mammogram Contrast in Tumor Detection</title><author>Leon-Sanchez, Mayra Adriana ; Hernandez-Rodriguez, Yazmin Mariela ; Cigarroa-Mayorga, Oscar Eduardo ; Bayareh-Mancilla, Rafael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_107710123</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Clinical trials</topic><topic>Electrical engineering computing</topic><topic>Feature extraction</topic><topic>GLCM Texture Analysis</topic><topic>Histograms</topic><topic>Image classification</topic><topic>Mammogram Preprocessing</topic><topic>Mammography</topic><topic>Measurement</topic><topic>Support vector machines</topic><topic>SVM Classification</topic><topic>Table lookup</topic><topic>Tumor Detection</topic><toplevel>online_resources</toplevel><creatorcontrib>Leon-Sanchez, Mayra Adriana</creatorcontrib><creatorcontrib>Hernandez-Rodriguez, Yazmin Mariela</creatorcontrib><creatorcontrib>Cigarroa-Mayorga, Oscar Eduardo</creatorcontrib><creatorcontrib>Bayareh-Mancilla, Rafael</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Leon-Sanchez, Mayra Adriana</au><au>Hernandez-Rodriguez, Yazmin Mariela</au><au>Cigarroa-Mayorga, Oscar Eduardo</au><au>Bayareh-Mancilla, Rafael</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Comparative Analysis of CLAHE and VOI LUT for Enhanced Mammogram Contrast in Tumor Detection</atitle><btitle>International Conference on Electrical Engineering, Computing Science, and Automatic Control (Online)</btitle><stitle>CCE</stitle><date>2024-10-23</date><risdate>2024</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><eissn>2642-3766</eissn><eisbn>9798350377545</eisbn><abstract>This study presents a comparative analysis of Contrast Limited Adaptive Histogram Equalization (CLAHE) and Value of Interest Look-Up Table (VOI LUT) as preprocessing methods for enhancing mammogram contrast to improve tumor detection. Using a dataset of 928 mammograms (464 BI-RADS 1 and 464 BI-RADS 4 and 5), we evaluated the performance of these methods in detecting tumors by extracting texture features using the Gray-Level Co-occurrence Matrix (GLCM) and classifying them with a Support Vector Machine (SVM). The results indicate that CLAHE slightly outperforms VOI LUT, with classification metrics showing precision, recall, F1-score, and accuracy of 0.57 for CLAHE compared to 0.55 for VOI LUT. These findings suggest that CLAHE may be more effective in enhancing mammogram textures, thereby improving the detection and classification of breast tumors. Future work should explore additional preprocessing techniques and classification algorithms to further validate and improve these results.</abstract><pub>IEEE</pub><doi>10.1109/CCE62852.2024.10771012</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2642-3766 |
ispartof | International Conference on Electrical Engineering, Computing Science, and Automatic Control (Online), 2024, p.1-7 |
issn | 2642-3766 |
language | eng |
recordid | cdi_ieee_primary_10771012 |
source | IEEE Xplore All Conference Series |
subjects | Accuracy Clinical trials Electrical engineering computing Feature extraction GLCM Texture Analysis Histograms Image classification Mammogram Preprocessing Mammography Measurement Support vector machines SVM Classification Table lookup Tumor Detection |
title | Comparative Analysis of CLAHE and VOI LUT for Enhanced Mammogram Contrast in Tumor Detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A11%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Comparative%20Analysis%20of%20CLAHE%20and%20VOI%20LUT%20for%20Enhanced%20Mammogram%20Contrast%20in%20Tumor%20Detection&rft.btitle=International%20Conference%20on%20Electrical%20Engineering,%20Computing%20Science,%20and%20Automatic%20Control%20(Online)&rft.au=Leon-Sanchez,%20Mayra%20Adriana&rft.date=2024-10-23&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.eissn=2642-3766&rft_id=info:doi/10.1109/CCE62852.2024.10771012&rft.eisbn=9798350377545&rft_dat=%3Cieee_CHZPO%3E10771012%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_107710123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10771012&rfr_iscdi=true |