Loading…

Hypertrix: An indicatrix for high-dimensional visualizations

Visualizing high dimensional data is challenging, since any dimensionality reduction technique will distort distances. A classic method in cartography-Tissot's Indicatrix, specific to sphere-to-plane maps- visualizes distortion using ellipses. Inspired by this idea, we describe the hypertrix: a...

Full description

Saved in:
Bibliographic Details
Main Authors: Raval, Shivam, Viegas, Fernanda, Wattenberg, Martin
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Raval, Shivam
Viegas, Fernanda
Wattenberg, Martin
description Visualizing high dimensional data is challenging, since any dimensionality reduction technique will distort distances. A classic method in cartography-Tissot's Indicatrix, specific to sphere-to-plane maps- visualizes distortion using ellipses. Inspired by this idea, we describe the hypertrix: a method for representing distortions that occur when data is projected from arbitrarily high dimensions onto a 2D plane. We demonstrate our technique through synthetic and real-world datasets, and describe how this indicatrix can guide interpretations of nonlinear dimensionality reduction.
doi_str_mv 10.1109/VIS55277.2024.00073
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10771111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10771111</ieee_id><sourcerecordid>10771111</sourcerecordid><originalsourceid>FETCH-ieee_primary_107711113</originalsourceid><addsrcrecordid>eNqFjcsKwjAURKMgWLRfoIv8QOtN09BW3Igoda24LcGm9kpfJFWsX28E985mOMyBIWTBwGcMktXleBIiiCI_gCD0ASDiI-ImURJzAVyEsYAxcazAvEQIPiWuMXer8QBCFscO2aRDp3Sv8bWm24Zik-NVfpEWraYl3kovx1o1BttGVvSJ5iErfMvespmTSSEro9xfz8jysD_vUg-VUlmnsZZ6yBjYexv-Z_4AvVM7Kg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hypertrix: An indicatrix for high-dimensional visualizations</title><source>IEEE Xplore All Conference Series</source><creator>Raval, Shivam ; Viegas, Fernanda ; Wattenberg, Martin</creator><creatorcontrib>Raval, Shivam ; Viegas, Fernanda ; Wattenberg, Martin</creatorcontrib><description>Visualizing high dimensional data is challenging, since any dimensionality reduction technique will distort distances. A classic method in cartography-Tissot's Indicatrix, specific to sphere-to-plane maps- visualizes distortion using ellipses. Inspired by this idea, we describe the hypertrix: a method for representing distortions that occur when data is projected from arbitrarily high dimensions onto a 2D plane. We demonstrate our technique through synthetic and real-world datasets, and describe how this indicatrix can guide interpretations of nonlinear dimensionality reduction.</description><identifier>EISSN: 2771-9553</identifier><identifier>EISBN: 9798350354850</identifier><identifier>DOI: 10.1109/VIS55277.2024.00073</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering ; Data visualization ; Dimensionality reduction ; High-dimensional data-Distortion-Text Visualization ; Image analysis ; Nonlinear distortion ; Visual analytics</subject><ispartof>IEEE Visualization Conference (Online), 2024, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10771111$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10771111$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Raval, Shivam</creatorcontrib><creatorcontrib>Viegas, Fernanda</creatorcontrib><creatorcontrib>Wattenberg, Martin</creatorcontrib><title>Hypertrix: An indicatrix for high-dimensional visualizations</title><title>IEEE Visualization Conference (Online)</title><addtitle>VIS</addtitle><description>Visualizing high dimensional data is challenging, since any dimensionality reduction technique will distort distances. A classic method in cartography-Tissot's Indicatrix, specific to sphere-to-plane maps- visualizes distortion using ellipses. Inspired by this idea, we describe the hypertrix: a method for representing distortions that occur when data is projected from arbitrarily high dimensions onto a 2D plane. We demonstrate our technique through synthetic and real-world datasets, and describe how this indicatrix can guide interpretations of nonlinear dimensionality reduction.</description><subject>Clustering</subject><subject>Data visualization</subject><subject>Dimensionality reduction</subject><subject>High-dimensional data-Distortion-Text Visualization</subject><subject>Image analysis</subject><subject>Nonlinear distortion</subject><subject>Visual analytics</subject><issn>2771-9553</issn><isbn>9798350354850</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFjcsKwjAURKMgWLRfoIv8QOtN09BW3Igoda24LcGm9kpfJFWsX28E985mOMyBIWTBwGcMktXleBIiiCI_gCD0ASDiI-ImURJzAVyEsYAxcazAvEQIPiWuMXer8QBCFscO2aRDp3Sv8bWm24Zik-NVfpEWraYl3kovx1o1BttGVvSJ5iErfMvespmTSSEro9xfz8jysD_vUg-VUlmnsZZ6yBjYexv-Z_4AvVM7Kg</recordid><startdate>20241013</startdate><enddate>20241013</enddate><creator>Raval, Shivam</creator><creator>Viegas, Fernanda</creator><creator>Wattenberg, Martin</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20241013</creationdate><title>Hypertrix: An indicatrix for high-dimensional visualizations</title><author>Raval, Shivam ; Viegas, Fernanda ; Wattenberg, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_107711113</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Clustering</topic><topic>Data visualization</topic><topic>Dimensionality reduction</topic><topic>High-dimensional data-Distortion-Text Visualization</topic><topic>Image analysis</topic><topic>Nonlinear distortion</topic><topic>Visual analytics</topic><toplevel>online_resources</toplevel><creatorcontrib>Raval, Shivam</creatorcontrib><creatorcontrib>Viegas, Fernanda</creatorcontrib><creatorcontrib>Wattenberg, Martin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Raval, Shivam</au><au>Viegas, Fernanda</au><au>Wattenberg, Martin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hypertrix: An indicatrix for high-dimensional visualizations</atitle><btitle>IEEE Visualization Conference (Online)</btitle><stitle>VIS</stitle><date>2024-10-13</date><risdate>2024</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>2771-9553</eissn><eisbn>9798350354850</eisbn><coden>IEEPAD</coden><abstract>Visualizing high dimensional data is challenging, since any dimensionality reduction technique will distort distances. A classic method in cartography-Tissot's Indicatrix, specific to sphere-to-plane maps- visualizes distortion using ellipses. Inspired by this idea, we describe the hypertrix: a method for representing distortions that occur when data is projected from arbitrarily high dimensions onto a 2D plane. We demonstrate our technique through synthetic and real-world datasets, and describe how this indicatrix can guide interpretations of nonlinear dimensionality reduction.</abstract><pub>IEEE</pub><doi>10.1109/VIS55277.2024.00073</doi></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2771-9553
ispartof IEEE Visualization Conference (Online), 2024, p.1-5
issn 2771-9553
language eng
recordid cdi_ieee_primary_10771111
source IEEE Xplore All Conference Series
subjects Clustering
Data visualization
Dimensionality reduction
High-dimensional data-Distortion-Text Visualization
Image analysis
Nonlinear distortion
Visual analytics
title Hypertrix: An indicatrix for high-dimensional visualizations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A25%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hypertrix:%20An%20indicatrix%20for%20high-dimensional%20visualizations&rft.btitle=IEEE%20Visualization%20Conference%20(Online)&rft.au=Raval,%20Shivam&rft.date=2024-10-13&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=2771-9553&rft.coden=IEEPAD&rft_id=info:doi/10.1109/VIS55277.2024.00073&rft.eisbn=9798350354850&rft_dat=%3Cieee_CHZPO%3E10771111%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_107711113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10771111&rfr_iscdi=true