Loading…
Reducing the Counting Time of Colonies Using Image Processing Techniques
Microbial colony counting is a crucial process in microbiology laboratories and medical research, yet it is often time-consuming and labor-intensive, particularly in large-scale settings or when dealing with numerous samples. Incorporating image processing techniques can significantly reduce the tim...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Microbial colony counting is a crucial process in microbiology laboratories and medical research, yet it is often time-consuming and labor-intensive, particularly in large-scale settings or when dealing with numerous samples. Incorporating image processing techniques can significantly reduce the time and error associated with manual colony counting. In this study, we developed and evaluated a deep learning model for automated E. coli colony counting using the YOLO (You Only Look Once) framework. The model achieved an mAP50 of 90.3%, demonstrating its high accuracy and potential for real-world application in laboratories of various sizes. This research not only streamlines the colony counting process but also allows laboratory personnel to allocate their time to other essential tasks. |
---|---|
ISSN: | 2642-3901 |
DOI: | 10.23919/ICCAS63016.2024.10773099 |