Loading…

A Comprehensive Survey of Face Recognition Advancements

Face recognition technology has experienced significant advancements in recent years due to the rapid progress in deep learning techniques. The purpose of this comprehensive literature review is to examine the various applications and underlying methodologies of face recognition. With recent advance...

Full description

Saved in:
Bibliographic Details
Main Authors: Mane, Sunil B., Shah, Nisarg, Garje, Vaibhav, Tejwani, Aman
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Mane, Sunil B.
Shah, Nisarg
Garje, Vaibhav
Tejwani, Aman
description Face recognition technology has experienced significant advancements in recent years due to the rapid progress in deep learning techniques. The purpose of this comprehensive literature review is to examine the various applications and underlying methodologies of face recognition. With recent advancements in face recognition techniques, a wider range of scenarios and challenges can be addressed. In this survey, we explore the latest developments in face recognition, including pitch variations, lighting changes, occlusions, and varied environments. The survey provides a comprehensive review of face recognition technology, covering applications, methodologies, dataset usage, model accuracy, and workings. Additionally, it analyzes three main approaches to face recognition for static images: traditional (or classical), deep learning-based, and hybrid. Hence, providing an overview of and comparing some of the popular face recognition approaches and techniques is the main objective of this paper.
doi_str_mv 10.1109/ICCUBEA61740.2024.10774962
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10774962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10774962</ieee_id><sourcerecordid>10774962</sourcerecordid><originalsourceid>FETCH-ieee_primary_107749623</originalsourceid><addsrcrecordid>eNqFzr0OgjAUQOFqYiJR3sChcQdvW-DSEYlGV39mQ_CqNVIIRRLe3kVnpzN8y2FsKSAUAvRqn-fn9SZLBEYQSpBRKAAx0okcMV-jTlUMSgtEGDNPIopAqDidMt-5JwAoCREksccw43ldNS09yDrTEz--254GXt_4tiiJH6is79Z0prY8u_aFLaki27k5m9yKlyP_2xlbbDenfBcYIro0ramKdrj8ntQf_gB52Doz</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Comprehensive Survey of Face Recognition Advancements</title><source>IEEE Xplore All Conference Series</source><creator>Mane, Sunil B. ; Shah, Nisarg ; Garje, Vaibhav ; Tejwani, Aman</creator><creatorcontrib>Mane, Sunil B. ; Shah, Nisarg ; Garje, Vaibhav ; Tejwani, Aman</creatorcontrib><description>Face recognition technology has experienced significant advancements in recent years due to the rapid progress in deep learning techniques. The purpose of this comprehensive literature review is to examine the various applications and underlying methodologies of face recognition. With recent advancements in face recognition techniques, a wider range of scenarios and challenges can be addressed. In this survey, we explore the latest developments in face recognition, including pitch variations, lighting changes, occlusions, and varied environments. The survey provides a comprehensive review of face recognition technology, covering applications, methodologies, dataset usage, model accuracy, and workings. Additionally, it analyzes three main approaches to face recognition for static images: traditional (or classical), deep learning-based, and hybrid. Hence, providing an overview of and comparing some of the popular face recognition approaches and techniques is the main objective of this paper.</description><identifier>EISSN: 2771-1358</identifier><identifier>EISBN: 9798350391770</identifier><identifier>DOI: 10.1109/ICCUBEA61740.2024.10774962</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Computational modeling ; Convolutional neural networks ; Deep learning ; Deep learning techniques ; Face recognition ; Face recognition technology ; holistic ; Lighting ; pitch variations ; Representation learning ; Reviews ; Surveys ; Synthetic data</subject><ispartof>International Conference on Computing Communication Control and Automation (Online), 2024, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10774962$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10774962$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mane, Sunil B.</creatorcontrib><creatorcontrib>Shah, Nisarg</creatorcontrib><creatorcontrib>Garje, Vaibhav</creatorcontrib><creatorcontrib>Tejwani, Aman</creatorcontrib><title>A Comprehensive Survey of Face Recognition Advancements</title><title>International Conference on Computing Communication Control and Automation (Online)</title><addtitle>ICCUBEA</addtitle><description>Face recognition technology has experienced significant advancements in recent years due to the rapid progress in deep learning techniques. The purpose of this comprehensive literature review is to examine the various applications and underlying methodologies of face recognition. With recent advancements in face recognition techniques, a wider range of scenarios and challenges can be addressed. In this survey, we explore the latest developments in face recognition, including pitch variations, lighting changes, occlusions, and varied environments. The survey provides a comprehensive review of face recognition technology, covering applications, methodologies, dataset usage, model accuracy, and workings. Additionally, it analyzes three main approaches to face recognition for static images: traditional (or classical), deep learning-based, and hybrid. Hence, providing an overview of and comparing some of the popular face recognition approaches and techniques is the main objective of this paper.</description><subject>Accuracy</subject><subject>Computational modeling</subject><subject>Convolutional neural networks</subject><subject>Deep learning</subject><subject>Deep learning techniques</subject><subject>Face recognition</subject><subject>Face recognition technology</subject><subject>holistic</subject><subject>Lighting</subject><subject>pitch variations</subject><subject>Representation learning</subject><subject>Reviews</subject><subject>Surveys</subject><subject>Synthetic data</subject><issn>2771-1358</issn><isbn>9798350391770</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFzr0OgjAUQOFqYiJR3sChcQdvW-DSEYlGV39mQ_CqNVIIRRLe3kVnpzN8y2FsKSAUAvRqn-fn9SZLBEYQSpBRKAAx0okcMV-jTlUMSgtEGDNPIopAqDidMt-5JwAoCREksccw43ldNS09yDrTEz--254GXt_4tiiJH6is79Z0prY8u_aFLaki27k5m9yKlyP_2xlbbDenfBcYIro0ramKdrj8ntQf_gB52Doz</recordid><startdate>20240823</startdate><enddate>20240823</enddate><creator>Mane, Sunil B.</creator><creator>Shah, Nisarg</creator><creator>Garje, Vaibhav</creator><creator>Tejwani, Aman</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240823</creationdate><title>A Comprehensive Survey of Face Recognition Advancements</title><author>Mane, Sunil B. ; Shah, Nisarg ; Garje, Vaibhav ; Tejwani, Aman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_107749623</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Computational modeling</topic><topic>Convolutional neural networks</topic><topic>Deep learning</topic><topic>Deep learning techniques</topic><topic>Face recognition</topic><topic>Face recognition technology</topic><topic>holistic</topic><topic>Lighting</topic><topic>pitch variations</topic><topic>Representation learning</topic><topic>Reviews</topic><topic>Surveys</topic><topic>Synthetic data</topic><toplevel>online_resources</toplevel><creatorcontrib>Mane, Sunil B.</creatorcontrib><creatorcontrib>Shah, Nisarg</creatorcontrib><creatorcontrib>Garje, Vaibhav</creatorcontrib><creatorcontrib>Tejwani, Aman</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mane, Sunil B.</au><au>Shah, Nisarg</au><au>Garje, Vaibhav</au><au>Tejwani, Aman</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Comprehensive Survey of Face Recognition Advancements</atitle><btitle>International Conference on Computing Communication Control and Automation (Online)</btitle><stitle>ICCUBEA</stitle><date>2024-08-23</date><risdate>2024</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>2771-1358</eissn><eisbn>9798350391770</eisbn><abstract>Face recognition technology has experienced significant advancements in recent years due to the rapid progress in deep learning techniques. The purpose of this comprehensive literature review is to examine the various applications and underlying methodologies of face recognition. With recent advancements in face recognition techniques, a wider range of scenarios and challenges can be addressed. In this survey, we explore the latest developments in face recognition, including pitch variations, lighting changes, occlusions, and varied environments. The survey provides a comprehensive review of face recognition technology, covering applications, methodologies, dataset usage, model accuracy, and workings. Additionally, it analyzes three main approaches to face recognition for static images: traditional (or classical), deep learning-based, and hybrid. Hence, providing an overview of and comparing some of the popular face recognition approaches and techniques is the main objective of this paper.</abstract><pub>IEEE</pub><doi>10.1109/ICCUBEA61740.2024.10774962</doi></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2771-1358
ispartof International Conference on Computing Communication Control and Automation (Online), 2024, p.1-5
issn 2771-1358
language eng
recordid cdi_ieee_primary_10774962
source IEEE Xplore All Conference Series
subjects Accuracy
Computational modeling
Convolutional neural networks
Deep learning
Deep learning techniques
Face recognition
Face recognition technology
holistic
Lighting
pitch variations
Representation learning
Reviews
Surveys
Synthetic data
title A Comprehensive Survey of Face Recognition Advancements
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A21%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Comprehensive%20Survey%20of%20Face%20Recognition%20Advancements&rft.btitle=International%20Conference%20on%20Computing%20Communication%20Control%20and%20Automation%20(Online)&rft.au=Mane,%20Sunil%20B.&rft.date=2024-08-23&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=2771-1358&rft_id=info:doi/10.1109/ICCUBEA61740.2024.10774962&rft.eisbn=9798350391770&rft_dat=%3Cieee_CHZPO%3E10774962%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_107749623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10774962&rfr_iscdi=true