Loading…
Probabilistic Trajectory Prediction of Vulnerable Road User Using Multimodal Inputs
Accurately predicting the actions of vulnerable road users (VRUs) is crucial for improving traffic flow and enhancing VRU safety. The unpredictable nature of VRU trajectories poses a significant challenge. To address this, we introduce the Probabilistic Multimodal Trajectory Prediction Network (PMTP...
Saved in:
Published in: | IEEE transactions on intelligent transportation systems 2024-12, p.1-11 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 11 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | |
creator | Hu, Chuan Niu, Ruochen Lin, Yiwei Yang, Biao Chen, Hao Zhao, Baixuan Zhang, Xi |
description | Accurately predicting the actions of vulnerable road users (VRUs) is crucial for improving traffic flow and enhancing VRU safety. The unpredictable nature of VRU trajectories poses a significant challenge. To address this, we introduce the Probabilistic Multimodal Trajectory Prediction Network (PMTPN), which effectively forecasts multimodal trajectories and their corresponding probabilities by utilizing a multitask learning framework that integrates trajectory and probability predictions. The network processes diverse input modalities, including bounding boxes, pedestrian pose, and ego-vehicle motion information. We enhance prediction performance by employing specialized encoders to extract distinct features from these inputs and a fusion module to integrate the data efficiently. To manage the variability in pedestrian actions, our model incorporates learnable motion queries that serve as reference points for predicting various potential outcomes. These queries are iteratively refined through attention operations with historical context in a multi-layer decoder. Additionally, a multi-gate mixture-of-experts (MMoE) module within the decoder helps mitigate the challenges of multitask learning. Our method significantly enhances trajectory prediction accuracy and provides probabilities for each predicted trajectory, demonstrating state-of-the-art results on the JAAD and PIE datasets. |
doi_str_mv | 10.1109/TITS.2024.3503683 |
format | article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10778100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10778100</ieee_id><sourcerecordid>10_1109_TITS_2024_3503683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-19f24582a8a36f53f3c1091964ea3e7d664b872883cd7b63028606e5fc7a2a0b3</originalsourceid><addsrcrecordid>eNpNkM1qwzAQhEVpoWnaByj0oBdwuvq1fCyhP4GUhsbp1ciyVBQcK0j2IW9fm-TQy84yzCzsh9AjgQUhUDyXq3K7oED5gglgUrErNCNCqAyAyOtppzwrQMAtuktpP7pcEDJD200Mta5961PvDS6j3lvTh3jCm2gbb3ofOhwc_hnazkZdtxZ_B93gXbJxHL77xZ9D2_tDaHSLV91x6NM9unG6TfbhonO0e3stlx_Z-ut9tXxZZ4Zw1WekcJQLRbXSTDrBHDPjJ6SQ3Gpm80ZKXqucKsVMk9eSAVUSpBXO5JpqqNkckfNdE0NK0brqGP1Bx1NFoJqoVBOVaqJSXaiMnadzx1tr_-XzXBEA9gfLwF6t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Probabilistic Trajectory Prediction of Vulnerable Road User Using Multimodal Inputs</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Hu, Chuan ; Niu, Ruochen ; Lin, Yiwei ; Yang, Biao ; Chen, Hao ; Zhao, Baixuan ; Zhang, Xi</creator><creatorcontrib>Hu, Chuan ; Niu, Ruochen ; Lin, Yiwei ; Yang, Biao ; Chen, Hao ; Zhao, Baixuan ; Zhang, Xi</creatorcontrib><description>Accurately predicting the actions of vulnerable road users (VRUs) is crucial for improving traffic flow and enhancing VRU safety. The unpredictable nature of VRU trajectories poses a significant challenge. To address this, we introduce the Probabilistic Multimodal Trajectory Prediction Network (PMTPN), which effectively forecasts multimodal trajectories and their corresponding probabilities by utilizing a multitask learning framework that integrates trajectory and probability predictions. The network processes diverse input modalities, including bounding boxes, pedestrian pose, and ego-vehicle motion information. We enhance prediction performance by employing specialized encoders to extract distinct features from these inputs and a fusion module to integrate the data efficiently. To manage the variability in pedestrian actions, our model incorporates learnable motion queries that serve as reference points for predicting various potential outcomes. These queries are iteratively refined through attention operations with historical context in a multi-layer decoder. Additionally, a multi-gate mixture-of-experts (MMoE) module within the decoder helps mitigate the challenges of multitask learning. Our method significantly enhances trajectory prediction accuracy and provides probabilities for each predicted trajectory, demonstrating state-of-the-art results on the JAAD and PIE datasets.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2024.3503683</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; autonomous vehicle ; Autonomous vehicles ; Data mining ; Decoding ; Feature extraction ; multi-modal prediction ; multi-task learning ; Pedestrians ; Predictive models ; Roads ; Trajectory ; Trajectory prediction ; Transformers</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-12, p.1-11</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>yb6864171@cczu.edu.cn ; chuan.hu@sjtu.edu.cn ; bxzhao7@sjtu.edu.cn ; braver1980@sjtu.edu.cn ; braver1989@usst.edu.cn</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10778100$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Hu, Chuan</creatorcontrib><creatorcontrib>Niu, Ruochen</creatorcontrib><creatorcontrib>Lin, Yiwei</creatorcontrib><creatorcontrib>Yang, Biao</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Zhao, Baixuan</creatorcontrib><creatorcontrib>Zhang, Xi</creatorcontrib><title>Probabilistic Trajectory Prediction of Vulnerable Road User Using Multimodal Inputs</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Accurately predicting the actions of vulnerable road users (VRUs) is crucial for improving traffic flow and enhancing VRU safety. The unpredictable nature of VRU trajectories poses a significant challenge. To address this, we introduce the Probabilistic Multimodal Trajectory Prediction Network (PMTPN), which effectively forecasts multimodal trajectories and their corresponding probabilities by utilizing a multitask learning framework that integrates trajectory and probability predictions. The network processes diverse input modalities, including bounding boxes, pedestrian pose, and ego-vehicle motion information. We enhance prediction performance by employing specialized encoders to extract distinct features from these inputs and a fusion module to integrate the data efficiently. To manage the variability in pedestrian actions, our model incorporates learnable motion queries that serve as reference points for predicting various potential outcomes. These queries are iteratively refined through attention operations with historical context in a multi-layer decoder. Additionally, a multi-gate mixture-of-experts (MMoE) module within the decoder helps mitigate the challenges of multitask learning. Our method significantly enhances trajectory prediction accuracy and provides probabilities for each predicted trajectory, demonstrating state-of-the-art results on the JAAD and PIE datasets.</description><subject>Accuracy</subject><subject>autonomous vehicle</subject><subject>Autonomous vehicles</subject><subject>Data mining</subject><subject>Decoding</subject><subject>Feature extraction</subject><subject>multi-modal prediction</subject><subject>multi-task learning</subject><subject>Pedestrians</subject><subject>Predictive models</subject><subject>Roads</subject><subject>Trajectory</subject><subject>Trajectory prediction</subject><subject>Transformers</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkM1qwzAQhEVpoWnaByj0oBdwuvq1fCyhP4GUhsbp1ciyVBQcK0j2IW9fm-TQy84yzCzsh9AjgQUhUDyXq3K7oED5gglgUrErNCNCqAyAyOtppzwrQMAtuktpP7pcEDJD200Mta5961PvDS6j3lvTh3jCm2gbb3ofOhwc_hnazkZdtxZ_B93gXbJxHL77xZ9D2_tDaHSLV91x6NM9unG6TfbhonO0e3stlx_Z-ut9tXxZZ4Zw1WekcJQLRbXSTDrBHDPjJ6SQ3Gpm80ZKXqucKsVMk9eSAVUSpBXO5JpqqNkckfNdE0NK0brqGP1Bx1NFoJqoVBOVaqJSXaiMnadzx1tr_-XzXBEA9gfLwF6t</recordid><startdate>20241204</startdate><enddate>20241204</enddate><creator>Hu, Chuan</creator><creator>Niu, Ruochen</creator><creator>Lin, Yiwei</creator><creator>Yang, Biao</creator><creator>Chen, Hao</creator><creator>Zhao, Baixuan</creator><creator>Zhang, Xi</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/yb6864171@cczu.edu.cn</orcidid><orcidid>https://orcid.org/chuan.hu@sjtu.edu.cn</orcidid><orcidid>https://orcid.org/bxzhao7@sjtu.edu.cn</orcidid><orcidid>https://orcid.org/braver1980@sjtu.edu.cn</orcidid><orcidid>https://orcid.org/braver1989@usst.edu.cn</orcidid></search><sort><creationdate>20241204</creationdate><title>Probabilistic Trajectory Prediction of Vulnerable Road User Using Multimodal Inputs</title><author>Hu, Chuan ; Niu, Ruochen ; Lin, Yiwei ; Yang, Biao ; Chen, Hao ; Zhao, Baixuan ; Zhang, Xi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-19f24582a8a36f53f3c1091964ea3e7d664b872883cd7b63028606e5fc7a2a0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>autonomous vehicle</topic><topic>Autonomous vehicles</topic><topic>Data mining</topic><topic>Decoding</topic><topic>Feature extraction</topic><topic>multi-modal prediction</topic><topic>multi-task learning</topic><topic>Pedestrians</topic><topic>Predictive models</topic><topic>Roads</topic><topic>Trajectory</topic><topic>Trajectory prediction</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Chuan</creatorcontrib><creatorcontrib>Niu, Ruochen</creatorcontrib><creatorcontrib>Lin, Yiwei</creatorcontrib><creatorcontrib>Yang, Biao</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Zhao, Baixuan</creatorcontrib><creatorcontrib>Zhang, Xi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Chuan</au><au>Niu, Ruochen</au><au>Lin, Yiwei</au><au>Yang, Biao</au><au>Chen, Hao</au><au>Zhao, Baixuan</au><au>Zhang, Xi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic Trajectory Prediction of Vulnerable Road User Using Multimodal Inputs</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-12-04</date><risdate>2024</risdate><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Accurately predicting the actions of vulnerable road users (VRUs) is crucial for improving traffic flow and enhancing VRU safety. The unpredictable nature of VRU trajectories poses a significant challenge. To address this, we introduce the Probabilistic Multimodal Trajectory Prediction Network (PMTPN), which effectively forecasts multimodal trajectories and their corresponding probabilities by utilizing a multitask learning framework that integrates trajectory and probability predictions. The network processes diverse input modalities, including bounding boxes, pedestrian pose, and ego-vehicle motion information. We enhance prediction performance by employing specialized encoders to extract distinct features from these inputs and a fusion module to integrate the data efficiently. To manage the variability in pedestrian actions, our model incorporates learnable motion queries that serve as reference points for predicting various potential outcomes. These queries are iteratively refined through attention operations with historical context in a multi-layer decoder. Additionally, a multi-gate mixture-of-experts (MMoE) module within the decoder helps mitigate the challenges of multitask learning. Our method significantly enhances trajectory prediction accuracy and provides probabilities for each predicted trajectory, demonstrating state-of-the-art results on the JAAD and PIE datasets.</abstract><pub>IEEE</pub><doi>10.1109/TITS.2024.3503683</doi><tpages>11</tpages><orcidid>https://orcid.org/yb6864171@cczu.edu.cn</orcidid><orcidid>https://orcid.org/chuan.hu@sjtu.edu.cn</orcidid><orcidid>https://orcid.org/bxzhao7@sjtu.edu.cn</orcidid><orcidid>https://orcid.org/braver1980@sjtu.edu.cn</orcidid><orcidid>https://orcid.org/braver1989@usst.edu.cn</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2024-12, p.1-11 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_ieee_primary_10778100 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Accuracy autonomous vehicle Autonomous vehicles Data mining Decoding Feature extraction multi-modal prediction multi-task learning Pedestrians Predictive models Roads Trajectory Trajectory prediction Transformers |
title | Probabilistic Trajectory Prediction of Vulnerable Road User Using Multimodal Inputs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A26%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20Trajectory%20Prediction%20of%20Vulnerable%20Road%20User%20Using%20Multimodal%20Inputs&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Hu,%20Chuan&rft.date=2024-12-04&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2024.3503683&rft_dat=%3Ccrossref_ieee_%3E10_1109_TITS_2024_3503683%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c148t-19f24582a8a36f53f3c1091964ea3e7d664b872883cd7b63028606e5fc7a2a0b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10778100&rfr_iscdi=true |