Loading…

Probabilistic Trajectory Prediction of Vulnerable Road User Using Multimodal Inputs

Accurately predicting the actions of vulnerable road users (VRUs) is crucial for improving traffic flow and enhancing VRU safety. The unpredictable nature of VRU trajectories poses a significant challenge. To address this, we introduce the Probabilistic Multimodal Trajectory Prediction Network (PMTP...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on intelligent transportation systems 2024-12, p.1-11
Main Authors: Hu, Chuan, Niu, Ruochen, Lin, Yiwei, Yang, Biao, Chen, Hao, Zhao, Baixuan, Zhang, Xi
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 11
container_issue
container_start_page 1
container_title IEEE transactions on intelligent transportation systems
container_volume
creator Hu, Chuan
Niu, Ruochen
Lin, Yiwei
Yang, Biao
Chen, Hao
Zhao, Baixuan
Zhang, Xi
description Accurately predicting the actions of vulnerable road users (VRUs) is crucial for improving traffic flow and enhancing VRU safety. The unpredictable nature of VRU trajectories poses a significant challenge. To address this, we introduce the Probabilistic Multimodal Trajectory Prediction Network (PMTPN), which effectively forecasts multimodal trajectories and their corresponding probabilities by utilizing a multitask learning framework that integrates trajectory and probability predictions. The network processes diverse input modalities, including bounding boxes, pedestrian pose, and ego-vehicle motion information. We enhance prediction performance by employing specialized encoders to extract distinct features from these inputs and a fusion module to integrate the data efficiently. To manage the variability in pedestrian actions, our model incorporates learnable motion queries that serve as reference points for predicting various potential outcomes. These queries are iteratively refined through attention operations with historical context in a multi-layer decoder. Additionally, a multi-gate mixture-of-experts (MMoE) module within the decoder helps mitigate the challenges of multitask learning. Our method significantly enhances trajectory prediction accuracy and provides probabilities for each predicted trajectory, demonstrating state-of-the-art results on the JAAD and PIE datasets.
doi_str_mv 10.1109/TITS.2024.3503683
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10778100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10778100</ieee_id><sourcerecordid>10_1109_TITS_2024_3503683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-19f24582a8a36f53f3c1091964ea3e7d664b872883cd7b63028606e5fc7a2a0b3</originalsourceid><addsrcrecordid>eNpNkM1qwzAQhEVpoWnaByj0oBdwuvq1fCyhP4GUhsbp1ciyVBQcK0j2IW9fm-TQy84yzCzsh9AjgQUhUDyXq3K7oED5gglgUrErNCNCqAyAyOtppzwrQMAtuktpP7pcEDJD200Mta5961PvDS6j3lvTh3jCm2gbb3ofOhwc_hnazkZdtxZ_B93gXbJxHL77xZ9D2_tDaHSLV91x6NM9unG6TfbhonO0e3stlx_Z-ut9tXxZZ4Zw1WekcJQLRbXSTDrBHDPjJ6SQ3Gpm80ZKXqucKsVMk9eSAVUSpBXO5JpqqNkckfNdE0NK0brqGP1Bx1NFoJqoVBOVaqJSXaiMnadzx1tr_-XzXBEA9gfLwF6t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Probabilistic Trajectory Prediction of Vulnerable Road User Using Multimodal Inputs</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Hu, Chuan ; Niu, Ruochen ; Lin, Yiwei ; Yang, Biao ; Chen, Hao ; Zhao, Baixuan ; Zhang, Xi</creator><creatorcontrib>Hu, Chuan ; Niu, Ruochen ; Lin, Yiwei ; Yang, Biao ; Chen, Hao ; Zhao, Baixuan ; Zhang, Xi</creatorcontrib><description>Accurately predicting the actions of vulnerable road users (VRUs) is crucial for improving traffic flow and enhancing VRU safety. The unpredictable nature of VRU trajectories poses a significant challenge. To address this, we introduce the Probabilistic Multimodal Trajectory Prediction Network (PMTPN), which effectively forecasts multimodal trajectories and their corresponding probabilities by utilizing a multitask learning framework that integrates trajectory and probability predictions. The network processes diverse input modalities, including bounding boxes, pedestrian pose, and ego-vehicle motion information. We enhance prediction performance by employing specialized encoders to extract distinct features from these inputs and a fusion module to integrate the data efficiently. To manage the variability in pedestrian actions, our model incorporates learnable motion queries that serve as reference points for predicting various potential outcomes. These queries are iteratively refined through attention operations with historical context in a multi-layer decoder. Additionally, a multi-gate mixture-of-experts (MMoE) module within the decoder helps mitigate the challenges of multitask learning. Our method significantly enhances trajectory prediction accuracy and provides probabilities for each predicted trajectory, demonstrating state-of-the-art results on the JAAD and PIE datasets.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2024.3503683</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; autonomous vehicle ; Autonomous vehicles ; Data mining ; Decoding ; Feature extraction ; multi-modal prediction ; multi-task learning ; Pedestrians ; Predictive models ; Roads ; Trajectory ; Trajectory prediction ; Transformers</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-12, p.1-11</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>yb6864171@cczu.edu.cn ; chuan.hu@sjtu.edu.cn ; bxzhao7@sjtu.edu.cn ; braver1980@sjtu.edu.cn ; braver1989@usst.edu.cn</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10778100$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Hu, Chuan</creatorcontrib><creatorcontrib>Niu, Ruochen</creatorcontrib><creatorcontrib>Lin, Yiwei</creatorcontrib><creatorcontrib>Yang, Biao</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Zhao, Baixuan</creatorcontrib><creatorcontrib>Zhang, Xi</creatorcontrib><title>Probabilistic Trajectory Prediction of Vulnerable Road User Using Multimodal Inputs</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Accurately predicting the actions of vulnerable road users (VRUs) is crucial for improving traffic flow and enhancing VRU safety. The unpredictable nature of VRU trajectories poses a significant challenge. To address this, we introduce the Probabilistic Multimodal Trajectory Prediction Network (PMTPN), which effectively forecasts multimodal trajectories and their corresponding probabilities by utilizing a multitask learning framework that integrates trajectory and probability predictions. The network processes diverse input modalities, including bounding boxes, pedestrian pose, and ego-vehicle motion information. We enhance prediction performance by employing specialized encoders to extract distinct features from these inputs and a fusion module to integrate the data efficiently. To manage the variability in pedestrian actions, our model incorporates learnable motion queries that serve as reference points for predicting various potential outcomes. These queries are iteratively refined through attention operations with historical context in a multi-layer decoder. Additionally, a multi-gate mixture-of-experts (MMoE) module within the decoder helps mitigate the challenges of multitask learning. Our method significantly enhances trajectory prediction accuracy and provides probabilities for each predicted trajectory, demonstrating state-of-the-art results on the JAAD and PIE datasets.</description><subject>Accuracy</subject><subject>autonomous vehicle</subject><subject>Autonomous vehicles</subject><subject>Data mining</subject><subject>Decoding</subject><subject>Feature extraction</subject><subject>multi-modal prediction</subject><subject>multi-task learning</subject><subject>Pedestrians</subject><subject>Predictive models</subject><subject>Roads</subject><subject>Trajectory</subject><subject>Trajectory prediction</subject><subject>Transformers</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkM1qwzAQhEVpoWnaByj0oBdwuvq1fCyhP4GUhsbp1ciyVBQcK0j2IW9fm-TQy84yzCzsh9AjgQUhUDyXq3K7oED5gglgUrErNCNCqAyAyOtppzwrQMAtuktpP7pcEDJD200Mta5961PvDS6j3lvTh3jCm2gbb3ofOhwc_hnazkZdtxZ_B93gXbJxHL77xZ9D2_tDaHSLV91x6NM9unG6TfbhonO0e3stlx_Z-ut9tXxZZ4Zw1WekcJQLRbXSTDrBHDPjJ6SQ3Gpm80ZKXqucKsVMk9eSAVUSpBXO5JpqqNkckfNdE0NK0brqGP1Bx1NFoJqoVBOVaqJSXaiMnadzx1tr_-XzXBEA9gfLwF6t</recordid><startdate>20241204</startdate><enddate>20241204</enddate><creator>Hu, Chuan</creator><creator>Niu, Ruochen</creator><creator>Lin, Yiwei</creator><creator>Yang, Biao</creator><creator>Chen, Hao</creator><creator>Zhao, Baixuan</creator><creator>Zhang, Xi</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/yb6864171@cczu.edu.cn</orcidid><orcidid>https://orcid.org/chuan.hu@sjtu.edu.cn</orcidid><orcidid>https://orcid.org/bxzhao7@sjtu.edu.cn</orcidid><orcidid>https://orcid.org/braver1980@sjtu.edu.cn</orcidid><orcidid>https://orcid.org/braver1989@usst.edu.cn</orcidid></search><sort><creationdate>20241204</creationdate><title>Probabilistic Trajectory Prediction of Vulnerable Road User Using Multimodal Inputs</title><author>Hu, Chuan ; Niu, Ruochen ; Lin, Yiwei ; Yang, Biao ; Chen, Hao ; Zhao, Baixuan ; Zhang, Xi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-19f24582a8a36f53f3c1091964ea3e7d664b872883cd7b63028606e5fc7a2a0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>autonomous vehicle</topic><topic>Autonomous vehicles</topic><topic>Data mining</topic><topic>Decoding</topic><topic>Feature extraction</topic><topic>multi-modal prediction</topic><topic>multi-task learning</topic><topic>Pedestrians</topic><topic>Predictive models</topic><topic>Roads</topic><topic>Trajectory</topic><topic>Trajectory prediction</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Chuan</creatorcontrib><creatorcontrib>Niu, Ruochen</creatorcontrib><creatorcontrib>Lin, Yiwei</creatorcontrib><creatorcontrib>Yang, Biao</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Zhao, Baixuan</creatorcontrib><creatorcontrib>Zhang, Xi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Chuan</au><au>Niu, Ruochen</au><au>Lin, Yiwei</au><au>Yang, Biao</au><au>Chen, Hao</au><au>Zhao, Baixuan</au><au>Zhang, Xi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic Trajectory Prediction of Vulnerable Road User Using Multimodal Inputs</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-12-04</date><risdate>2024</risdate><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Accurately predicting the actions of vulnerable road users (VRUs) is crucial for improving traffic flow and enhancing VRU safety. The unpredictable nature of VRU trajectories poses a significant challenge. To address this, we introduce the Probabilistic Multimodal Trajectory Prediction Network (PMTPN), which effectively forecasts multimodal trajectories and their corresponding probabilities by utilizing a multitask learning framework that integrates trajectory and probability predictions. The network processes diverse input modalities, including bounding boxes, pedestrian pose, and ego-vehicle motion information. We enhance prediction performance by employing specialized encoders to extract distinct features from these inputs and a fusion module to integrate the data efficiently. To manage the variability in pedestrian actions, our model incorporates learnable motion queries that serve as reference points for predicting various potential outcomes. These queries are iteratively refined through attention operations with historical context in a multi-layer decoder. Additionally, a multi-gate mixture-of-experts (MMoE) module within the decoder helps mitigate the challenges of multitask learning. Our method significantly enhances trajectory prediction accuracy and provides probabilities for each predicted trajectory, demonstrating state-of-the-art results on the JAAD and PIE datasets.</abstract><pub>IEEE</pub><doi>10.1109/TITS.2024.3503683</doi><tpages>11</tpages><orcidid>https://orcid.org/yb6864171@cczu.edu.cn</orcidid><orcidid>https://orcid.org/chuan.hu@sjtu.edu.cn</orcidid><orcidid>https://orcid.org/bxzhao7@sjtu.edu.cn</orcidid><orcidid>https://orcid.org/braver1980@sjtu.edu.cn</orcidid><orcidid>https://orcid.org/braver1989@usst.edu.cn</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2024-12, p.1-11
issn 1524-9050
1558-0016
language eng
recordid cdi_ieee_primary_10778100
source IEEE Electronic Library (IEL) Journals
subjects Accuracy
autonomous vehicle
Autonomous vehicles
Data mining
Decoding
Feature extraction
multi-modal prediction
multi-task learning
Pedestrians
Predictive models
Roads
Trajectory
Trajectory prediction
Transformers
title Probabilistic Trajectory Prediction of Vulnerable Road User Using Multimodal Inputs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A26%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20Trajectory%20Prediction%20of%20Vulnerable%20Road%20User%20Using%20Multimodal%20Inputs&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Hu,%20Chuan&rft.date=2024-12-04&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2024.3503683&rft_dat=%3Ccrossref_ieee_%3E10_1109_TITS_2024_3503683%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c148t-19f24582a8a36f53f3c1091964ea3e7d664b872883cd7b63028606e5fc7a2a0b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10778100&rfr_iscdi=true