Loading…

Identifying Prediabetes in Canadian Populations Using Machine Learning

Prediabetes is a critical health condition characterized by elevated blood glucose levels that fall below the threshold for Type 2 diabetes (T2D) diagnosis. Accurate identification of prediabetes is essential to forestall the progression to T2D among at-risk individuals. This study aims to pinpoint...

Full description

Saved in:
Bibliographic Details
Main Authors: Lu, Katherine, Sheth, Paijani, Zhou, Zhi Lin, Kazari, Kamyar, Guergachi, Aziz, Keshavjee, Karim, Noaeen, Mohammad, Shakeri, Zahra
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Lu, Katherine
Sheth, Paijani
Zhou, Zhi Lin
Kazari, Kamyar
Guergachi, Aziz
Keshavjee, Karim
Noaeen, Mohammad
Shakeri, Zahra
description Prediabetes is a critical health condition characterized by elevated blood glucose levels that fall below the threshold for Type 2 diabetes (T2D) diagnosis. Accurate identification of prediabetes is essential to forestall the progression to T2D among at-risk individuals. This study aims to pinpoint the most effective machine learning (ML) model for prediabetes prediction and to elucidate the key biological variables critical for distinguishing individuals with prediabetes. Utilizing data from the Canadian Primary Care Sentinel Surveillance Network (CPCSSN), our analysis included 6,414 participants identified as either nondiabetic or prediabetic. A rigorous selection process led to the identification of ten variables for the study, informed by literature review, data completeness, and the evaluation of collinearity. Our comparative analysis of seven ML models revealed that the Deep Neural Network (DNN), enhanced with early stop regularization, outshined others by achieving a recall rate of 60%. This model's performance underscores its potential in effectively identifying prediabetic individuals, showcasing the strategic integration of ML in healthcare. While the model reflects a significant advancement in prediabetes prediction, it also opens avenues for further research to refine prediction accuracy, possibly by integrating novel biological markers or exploring alternative modeling techniques. The results of our work represent a pivotal step forward in the early detection of prediabetes, contributing significantly to preventive healthcare measures and the broader fight against the global epidemic of Type 2 diabetes.
doi_str_mv 10.1109/EMBC53108.2024.10782174
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10782174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10782174</ieee_id><sourcerecordid>10782174</sourcerecordid><originalsourceid>FETCH-LOGICAL-i704-8349ef10aede9f52af9b0b437286fbd089a1fb71a562ac2b792a8df39941ff8e3</originalsourceid><addsrcrecordid>eNo1j81Kw0AUhUdBsNS8gWBeIPHOX2buUkOrhRS7qOtyp7mjA3Vakrro21vRrg7n4_DBEeJBQi0l4ONs-dxaLcHXCpSpJTivpDNXokCHXlvQThrEazFRDZoKGjC3ohjHFMBqaywqPRHzRc_5mOIp5Y9yNXCfKPCRxzLlsqVM557L1f7wvaNj2uexfB9_l0vafqbMZcc05DO4EzeRdiMX_zkV6_ls3b5W3dvLon3qquTAVF4b5CiBuGeMVlHEAMFop3wTQw8eScbgJNlG0VYFh4p8HzWikTF61lNx_6dNzLw5DOmLhtPm8lz_ACTCTgg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Identifying Prediabetes in Canadian Populations Using Machine Learning</title><source>IEEE Xplore All Conference Series</source><creator>Lu, Katherine ; Sheth, Paijani ; Zhou, Zhi Lin ; Kazari, Kamyar ; Guergachi, Aziz ; Keshavjee, Karim ; Noaeen, Mohammad ; Shakeri, Zahra</creator><creatorcontrib>Lu, Katherine ; Sheth, Paijani ; Zhou, Zhi Lin ; Kazari, Kamyar ; Guergachi, Aziz ; Keshavjee, Karim ; Noaeen, Mohammad ; Shakeri, Zahra</creatorcontrib><description>Prediabetes is a critical health condition characterized by elevated blood glucose levels that fall below the threshold for Type 2 diabetes (T2D) diagnosis. Accurate identification of prediabetes is essential to forestall the progression to T2D among at-risk individuals. This study aims to pinpoint the most effective machine learning (ML) model for prediabetes prediction and to elucidate the key biological variables critical for distinguishing individuals with prediabetes. Utilizing data from the Canadian Primary Care Sentinel Surveillance Network (CPCSSN), our analysis included 6,414 participants identified as either nondiabetic or prediabetic. A rigorous selection process led to the identification of ten variables for the study, informed by literature review, data completeness, and the evaluation of collinearity. Our comparative analysis of seven ML models revealed that the Deep Neural Network (DNN), enhanced with early stop regularization, outshined others by achieving a recall rate of 60%. This model's performance underscores its potential in effectively identifying prediabetic individuals, showcasing the strategic integration of ML in healthcare. While the model reflects a significant advancement in prediabetes prediction, it also opens avenues for further research to refine prediction accuracy, possibly by integrating novel biological markers or exploring alternative modeling techniques. The results of our work represent a pivotal step forward in the early detection of prediabetes, contributing significantly to preventive healthcare measures and the broader fight against the global epidemic of Type 2 diabetes.</description><identifier>EISSN: 2694-0604</identifier><identifier>EISBN: 9798350371499</identifier><identifier>DOI: 10.1109/EMBC53108.2024.10782174</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Artificial neural networks ; Biological system modeling ; Diabetes ; Machine learning ; Medical services ; Predictive models ; Psychology ; Risk management ; Surveillance</subject><ispartof>2024 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2024, p.1-4</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10782174$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,27906,54536,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10782174$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lu, Katherine</creatorcontrib><creatorcontrib>Sheth, Paijani</creatorcontrib><creatorcontrib>Zhou, Zhi Lin</creatorcontrib><creatorcontrib>Kazari, Kamyar</creatorcontrib><creatorcontrib>Guergachi, Aziz</creatorcontrib><creatorcontrib>Keshavjee, Karim</creatorcontrib><creatorcontrib>Noaeen, Mohammad</creatorcontrib><creatorcontrib>Shakeri, Zahra</creatorcontrib><title>Identifying Prediabetes in Canadian Populations Using Machine Learning</title><title>2024 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)</title><addtitle>EMBC</addtitle><description>Prediabetes is a critical health condition characterized by elevated blood glucose levels that fall below the threshold for Type 2 diabetes (T2D) diagnosis. Accurate identification of prediabetes is essential to forestall the progression to T2D among at-risk individuals. This study aims to pinpoint the most effective machine learning (ML) model for prediabetes prediction and to elucidate the key biological variables critical for distinguishing individuals with prediabetes. Utilizing data from the Canadian Primary Care Sentinel Surveillance Network (CPCSSN), our analysis included 6,414 participants identified as either nondiabetic or prediabetic. A rigorous selection process led to the identification of ten variables for the study, informed by literature review, data completeness, and the evaluation of collinearity. Our comparative analysis of seven ML models revealed that the Deep Neural Network (DNN), enhanced with early stop regularization, outshined others by achieving a recall rate of 60%. This model's performance underscores its potential in effectively identifying prediabetic individuals, showcasing the strategic integration of ML in healthcare. While the model reflects a significant advancement in prediabetes prediction, it also opens avenues for further research to refine prediction accuracy, possibly by integrating novel biological markers or exploring alternative modeling techniques. The results of our work represent a pivotal step forward in the early detection of prediabetes, contributing significantly to preventive healthcare measures and the broader fight against the global epidemic of Type 2 diabetes.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Biological system modeling</subject><subject>Diabetes</subject><subject>Machine learning</subject><subject>Medical services</subject><subject>Predictive models</subject><subject>Psychology</subject><subject>Risk management</subject><subject>Surveillance</subject><issn>2694-0604</issn><isbn>9798350371499</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j81Kw0AUhUdBsNS8gWBeIPHOX2buUkOrhRS7qOtyp7mjA3Vakrro21vRrg7n4_DBEeJBQi0l4ONs-dxaLcHXCpSpJTivpDNXokCHXlvQThrEazFRDZoKGjC3ohjHFMBqaywqPRHzRc_5mOIp5Y9yNXCfKPCRxzLlsqVM557L1f7wvaNj2uexfB9_l0vafqbMZcc05DO4EzeRdiMX_zkV6_ls3b5W3dvLon3qquTAVF4b5CiBuGeMVlHEAMFop3wTQw8eScbgJNlG0VYFh4p8HzWikTF61lNx_6dNzLw5DOmLhtPm8lz_ACTCTgg</recordid><startdate>20240715</startdate><enddate>20240715</enddate><creator>Lu, Katherine</creator><creator>Sheth, Paijani</creator><creator>Zhou, Zhi Lin</creator><creator>Kazari, Kamyar</creator><creator>Guergachi, Aziz</creator><creator>Keshavjee, Karim</creator><creator>Noaeen, Mohammad</creator><creator>Shakeri, Zahra</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20240715</creationdate><title>Identifying Prediabetes in Canadian Populations Using Machine Learning</title><author>Lu, Katherine ; Sheth, Paijani ; Zhou, Zhi Lin ; Kazari, Kamyar ; Guergachi, Aziz ; Keshavjee, Karim ; Noaeen, Mohammad ; Shakeri, Zahra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i704-8349ef10aede9f52af9b0b437286fbd089a1fb71a562ac2b792a8df39941ff8e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Biological system modeling</topic><topic>Diabetes</topic><topic>Machine learning</topic><topic>Medical services</topic><topic>Predictive models</topic><topic>Psychology</topic><topic>Risk management</topic><topic>Surveillance</topic><toplevel>online_resources</toplevel><creatorcontrib>Lu, Katherine</creatorcontrib><creatorcontrib>Sheth, Paijani</creatorcontrib><creatorcontrib>Zhou, Zhi Lin</creatorcontrib><creatorcontrib>Kazari, Kamyar</creatorcontrib><creatorcontrib>Guergachi, Aziz</creatorcontrib><creatorcontrib>Keshavjee, Karim</creatorcontrib><creatorcontrib>Noaeen, Mohammad</creatorcontrib><creatorcontrib>Shakeri, Zahra</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lu, Katherine</au><au>Sheth, Paijani</au><au>Zhou, Zhi Lin</au><au>Kazari, Kamyar</au><au>Guergachi, Aziz</au><au>Keshavjee, Karim</au><au>Noaeen, Mohammad</au><au>Shakeri, Zahra</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Identifying Prediabetes in Canadian Populations Using Machine Learning</atitle><btitle>2024 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)</btitle><stitle>EMBC</stitle><date>2024-07-15</date><risdate>2024</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><eissn>2694-0604</eissn><eisbn>9798350371499</eisbn><abstract>Prediabetes is a critical health condition characterized by elevated blood glucose levels that fall below the threshold for Type 2 diabetes (T2D) diagnosis. Accurate identification of prediabetes is essential to forestall the progression to T2D among at-risk individuals. This study aims to pinpoint the most effective machine learning (ML) model for prediabetes prediction and to elucidate the key biological variables critical for distinguishing individuals with prediabetes. Utilizing data from the Canadian Primary Care Sentinel Surveillance Network (CPCSSN), our analysis included 6,414 participants identified as either nondiabetic or prediabetic. A rigorous selection process led to the identification of ten variables for the study, informed by literature review, data completeness, and the evaluation of collinearity. Our comparative analysis of seven ML models revealed that the Deep Neural Network (DNN), enhanced with early stop regularization, outshined others by achieving a recall rate of 60%. This model's performance underscores its potential in effectively identifying prediabetic individuals, showcasing the strategic integration of ML in healthcare. While the model reflects a significant advancement in prediabetes prediction, it also opens avenues for further research to refine prediction accuracy, possibly by integrating novel biological markers or exploring alternative modeling techniques. The results of our work represent a pivotal step forward in the early detection of prediabetes, contributing significantly to preventive healthcare measures and the broader fight against the global epidemic of Type 2 diabetes.</abstract><pub>IEEE</pub><doi>10.1109/EMBC53108.2024.10782174</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2694-0604
ispartof 2024 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2024, p.1-4
issn 2694-0604
language eng
recordid cdi_ieee_primary_10782174
source IEEE Xplore All Conference Series
subjects Accuracy
Artificial neural networks
Biological system modeling
Diabetes
Machine learning
Medical services
Predictive models
Psychology
Risk management
Surveillance
title Identifying Prediabetes in Canadian Populations Using Machine Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A27%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Identifying%20Prediabetes%20in%20Canadian%20Populations%20Using%20Machine%20Learning&rft.btitle=2024%2046th%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society%20(EMBC)&rft.au=Lu,%20Katherine&rft.date=2024-07-15&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.eissn=2694-0604&rft_id=info:doi/10.1109/EMBC53108.2024.10782174&rft.eisbn=9798350371499&rft_dat=%3Cieee_CHZPO%3E10782174%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i704-8349ef10aede9f52af9b0b437286fbd089a1fb71a562ac2b792a8df39941ff8e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10782174&rfr_iscdi=true