Loading…
Thermal Image-Based Bed Monitoring System Using VLP Model for Elderly Fall Prevention
Falls occur when elderly individuals get out of bed alone and can cause serious injuries to them. Bed monitoring systems monitor the postures of the elderly near the bed to prevent them from falls. Integrating bed monitoring systems with electronic health records (EHRs) aids caregivers in assessing...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Hsieh, Ping-Hung Lee, Po-Ting Yang, Jia-Han Sung, Pi-Shan Lin, Chih-Lung |
description | Falls occur when elderly individuals get out of bed alone and can cause serious injuries to them. Bed monitoring systems monitor the postures of the elderly near the bed to prevent them from falls. Integrating bed monitoring systems with electronic health records (EHRs) aids caregivers in assessing the elderly's risk of falls. This work proposes a bed monitoring system that uses a Vision-Language Pre-training (VLP) model to generate captions of a person's posture in bed for EHRs. The proposed system uses thermal images to identify a person's posture without compromising privacy. These thermal images are then converted into visual representations with a fine-tuned vision transformer and fed into the VLP model to obtain captions. The proposed system achieves 100% accuracy in generating captions for 770 thermal images across ten postures from ten participants, demonstrating its capability to recognize human postures and generate recordings for EHRs, thereby enhancing safety for the elderly. |
doi_str_mv | 10.1109/SENSORS60989.2024.10785123 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10785123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10785123</ieee_id><sourcerecordid>10785123</sourcerecordid><originalsourceid>FETCH-ieee_primary_107851233</originalsourceid><addsrcrecordid>eNqFjk9rgzAYh7PCYP3jN9gh7K57k0xNrg5LC9taat1VAr66jKgjkYHfvi205x5-PDw8lx8hLwwixkC9FvlXsTsUCSipIg78LWKQyphx8UAClSopYhCJiFk6I3POEhkqztUTWXj_C8Ah5nJOyuMPuk5buu10i2GmPdY0O-9z6M04ONO3tJj8iB0t_UW-P_bnVqOlzeBobmt0dqJrbS3dO_zHfjRDvyKPjbYegyuX5HmdH983oUHE6s-ZTruput0Vd_IJ-iZD6Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Thermal Image-Based Bed Monitoring System Using VLP Model for Elderly Fall Prevention</title><source>IEEE Xplore All Conference Series</source><creator>Hsieh, Ping-Hung ; Lee, Po-Ting ; Yang, Jia-Han ; Sung, Pi-Shan ; Lin, Chih-Lung</creator><creatorcontrib>Hsieh, Ping-Hung ; Lee, Po-Ting ; Yang, Jia-Han ; Sung, Pi-Shan ; Lin, Chih-Lung</creatorcontrib><description>Falls occur when elderly individuals get out of bed alone and can cause serious injuries to them. Bed monitoring systems monitor the postures of the elderly near the bed to prevent them from falls. Integrating bed monitoring systems with electronic health records (EHRs) aids caregivers in assessing the elderly's risk of falls. This work proposes a bed monitoring system that uses a Vision-Language Pre-training (VLP) model to generate captions of a person's posture in bed for EHRs. The proposed system uses thermal images to identify a person's posture without compromising privacy. These thermal images are then converted into visual representations with a fine-tuned vision transformer and fed into the VLP model to obtain captions. The proposed system achieves 100% accuracy in generating captions for 770 thermal images across ten postures from ten participants, demonstrating its capability to recognize human postures and generate recordings for EHRs, thereby enhancing safety for the elderly.</description><identifier>EISSN: 2168-9229</identifier><identifier>EISBN: 9798350363517</identifier><identifier>DOI: 10.1109/SENSORS60989.2024.10785123</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Bed Monitoring System ; Image recognition ; Monitoring ; Older adults ; Posture recognition ; Recording ; Safety ; Sensor systems ; Thermal sensors ; Transformers ; Vision-Language Pretraining (VLP) ; Visualization</subject><ispartof>Proceedings of IEEE Sensors ..., 2024, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10785123$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10785123$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hsieh, Ping-Hung</creatorcontrib><creatorcontrib>Lee, Po-Ting</creatorcontrib><creatorcontrib>Yang, Jia-Han</creatorcontrib><creatorcontrib>Sung, Pi-Shan</creatorcontrib><creatorcontrib>Lin, Chih-Lung</creatorcontrib><title>Thermal Image-Based Bed Monitoring System Using VLP Model for Elderly Fall Prevention</title><title>Proceedings of IEEE Sensors ...</title><addtitle>SENSORS</addtitle><description>Falls occur when elderly individuals get out of bed alone and can cause serious injuries to them. Bed monitoring systems monitor the postures of the elderly near the bed to prevent them from falls. Integrating bed monitoring systems with electronic health records (EHRs) aids caregivers in assessing the elderly's risk of falls. This work proposes a bed monitoring system that uses a Vision-Language Pre-training (VLP) model to generate captions of a person's posture in bed for EHRs. The proposed system uses thermal images to identify a person's posture without compromising privacy. These thermal images are then converted into visual representations with a fine-tuned vision transformer and fed into the VLP model to obtain captions. The proposed system achieves 100% accuracy in generating captions for 770 thermal images across ten postures from ten participants, demonstrating its capability to recognize human postures and generate recordings for EHRs, thereby enhancing safety for the elderly.</description><subject>Accuracy</subject><subject>Bed Monitoring System</subject><subject>Image recognition</subject><subject>Monitoring</subject><subject>Older adults</subject><subject>Posture recognition</subject><subject>Recording</subject><subject>Safety</subject><subject>Sensor systems</subject><subject>Thermal sensors</subject><subject>Transformers</subject><subject>Vision-Language Pretraining (VLP)</subject><subject>Visualization</subject><issn>2168-9229</issn><isbn>9798350363517</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFjk9rgzAYh7PCYP3jN9gh7K57k0xNrg5LC9taat1VAr66jKgjkYHfvi205x5-PDw8lx8hLwwixkC9FvlXsTsUCSipIg78LWKQyphx8UAClSopYhCJiFk6I3POEhkqztUTWXj_C8Ah5nJOyuMPuk5buu10i2GmPdY0O-9z6M04ONO3tJj8iB0t_UW-P_bnVqOlzeBobmt0dqJrbS3dO_zHfjRDvyKPjbYegyuX5HmdH983oUHE6s-ZTruput0Vd_IJ-iZD6Q</recordid><startdate>20241020</startdate><enddate>20241020</enddate><creator>Hsieh, Ping-Hung</creator><creator>Lee, Po-Ting</creator><creator>Yang, Jia-Han</creator><creator>Sung, Pi-Shan</creator><creator>Lin, Chih-Lung</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20241020</creationdate><title>Thermal Image-Based Bed Monitoring System Using VLP Model for Elderly Fall Prevention</title><author>Hsieh, Ping-Hung ; Lee, Po-Ting ; Yang, Jia-Han ; Sung, Pi-Shan ; Lin, Chih-Lung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_107851233</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Bed Monitoring System</topic><topic>Image recognition</topic><topic>Monitoring</topic><topic>Older adults</topic><topic>Posture recognition</topic><topic>Recording</topic><topic>Safety</topic><topic>Sensor systems</topic><topic>Thermal sensors</topic><topic>Transformers</topic><topic>Vision-Language Pretraining (VLP)</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Hsieh, Ping-Hung</creatorcontrib><creatorcontrib>Lee, Po-Ting</creatorcontrib><creatorcontrib>Yang, Jia-Han</creatorcontrib><creatorcontrib>Sung, Pi-Shan</creatorcontrib><creatorcontrib>Lin, Chih-Lung</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hsieh, Ping-Hung</au><au>Lee, Po-Ting</au><au>Yang, Jia-Han</au><au>Sung, Pi-Shan</au><au>Lin, Chih-Lung</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Thermal Image-Based Bed Monitoring System Using VLP Model for Elderly Fall Prevention</atitle><btitle>Proceedings of IEEE Sensors ...</btitle><stitle>SENSORS</stitle><date>2024-10-20</date><risdate>2024</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><eissn>2168-9229</eissn><eisbn>9798350363517</eisbn><abstract>Falls occur when elderly individuals get out of bed alone and can cause serious injuries to them. Bed monitoring systems monitor the postures of the elderly near the bed to prevent them from falls. Integrating bed monitoring systems with electronic health records (EHRs) aids caregivers in assessing the elderly's risk of falls. This work proposes a bed monitoring system that uses a Vision-Language Pre-training (VLP) model to generate captions of a person's posture in bed for EHRs. The proposed system uses thermal images to identify a person's posture without compromising privacy. These thermal images are then converted into visual representations with a fine-tuned vision transformer and fed into the VLP model to obtain captions. The proposed system achieves 100% accuracy in generating captions for 770 thermal images across ten postures from ten participants, demonstrating its capability to recognize human postures and generate recordings for EHRs, thereby enhancing safety for the elderly.</abstract><pub>IEEE</pub><doi>10.1109/SENSORS60989.2024.10785123</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2168-9229 |
ispartof | Proceedings of IEEE Sensors ..., 2024, p.1-4 |
issn | 2168-9229 |
language | eng |
recordid | cdi_ieee_primary_10785123 |
source | IEEE Xplore All Conference Series |
subjects | Accuracy Bed Monitoring System Image recognition Monitoring Older adults Posture recognition Recording Safety Sensor systems Thermal sensors Transformers Vision-Language Pretraining (VLP) Visualization |
title | Thermal Image-Based Bed Monitoring System Using VLP Model for Elderly Fall Prevention |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A27%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Thermal%20Image-Based%20Bed%20Monitoring%20System%20Using%20VLP%20Model%20for%20Elderly%20Fall%20Prevention&rft.btitle=Proceedings%20of%20IEEE%20Sensors%20...&rft.au=Hsieh,%20Ping-Hung&rft.date=2024-10-20&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.eissn=2168-9229&rft_id=info:doi/10.1109/SENSORS60989.2024.10785123&rft.eisbn=9798350363517&rft_dat=%3Cieee_CHZPO%3E10785123%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_107851233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10785123&rfr_iscdi=true |