Loading…

Thermal Image-Based Bed Monitoring System Using VLP Model for Elderly Fall Prevention

Falls occur when elderly individuals get out of bed alone and can cause serious injuries to them. Bed monitoring systems monitor the postures of the elderly near the bed to prevent them from falls. Integrating bed monitoring systems with electronic health records (EHRs) aids caregivers in assessing...

Full description

Saved in:
Bibliographic Details
Main Authors: Hsieh, Ping-Hung, Lee, Po-Ting, Yang, Jia-Han, Sung, Pi-Shan, Lin, Chih-Lung
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Hsieh, Ping-Hung
Lee, Po-Ting
Yang, Jia-Han
Sung, Pi-Shan
Lin, Chih-Lung
description Falls occur when elderly individuals get out of bed alone and can cause serious injuries to them. Bed monitoring systems monitor the postures of the elderly near the bed to prevent them from falls. Integrating bed monitoring systems with electronic health records (EHRs) aids caregivers in assessing the elderly's risk of falls. This work proposes a bed monitoring system that uses a Vision-Language Pre-training (VLP) model to generate captions of a person's posture in bed for EHRs. The proposed system uses thermal images to identify a person's posture without compromising privacy. These thermal images are then converted into visual representations with a fine-tuned vision transformer and fed into the VLP model to obtain captions. The proposed system achieves 100% accuracy in generating captions for 770 thermal images across ten postures from ten participants, demonstrating its capability to recognize human postures and generate recordings for EHRs, thereby enhancing safety for the elderly.
doi_str_mv 10.1109/SENSORS60989.2024.10785123
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10785123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10785123</ieee_id><sourcerecordid>10785123</sourcerecordid><originalsourceid>FETCH-ieee_primary_107851233</originalsourceid><addsrcrecordid>eNqFjk9rgzAYh7PCYP3jN9gh7K57k0xNrg5LC9taat1VAr66jKgjkYHfvi205x5-PDw8lx8hLwwixkC9FvlXsTsUCSipIg78LWKQyphx8UAClSopYhCJiFk6I3POEhkqztUTWXj_C8Ah5nJOyuMPuk5buu10i2GmPdY0O-9z6M04ONO3tJj8iB0t_UW-P_bnVqOlzeBobmt0dqJrbS3dO_zHfjRDvyKPjbYegyuX5HmdH983oUHE6s-ZTruput0Vd_IJ-iZD6Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Thermal Image-Based Bed Monitoring System Using VLP Model for Elderly Fall Prevention</title><source>IEEE Xplore All Conference Series</source><creator>Hsieh, Ping-Hung ; Lee, Po-Ting ; Yang, Jia-Han ; Sung, Pi-Shan ; Lin, Chih-Lung</creator><creatorcontrib>Hsieh, Ping-Hung ; Lee, Po-Ting ; Yang, Jia-Han ; Sung, Pi-Shan ; Lin, Chih-Lung</creatorcontrib><description>Falls occur when elderly individuals get out of bed alone and can cause serious injuries to them. Bed monitoring systems monitor the postures of the elderly near the bed to prevent them from falls. Integrating bed monitoring systems with electronic health records (EHRs) aids caregivers in assessing the elderly's risk of falls. This work proposes a bed monitoring system that uses a Vision-Language Pre-training (VLP) model to generate captions of a person's posture in bed for EHRs. The proposed system uses thermal images to identify a person's posture without compromising privacy. These thermal images are then converted into visual representations with a fine-tuned vision transformer and fed into the VLP model to obtain captions. The proposed system achieves 100% accuracy in generating captions for 770 thermal images across ten postures from ten participants, demonstrating its capability to recognize human postures and generate recordings for EHRs, thereby enhancing safety for the elderly.</description><identifier>EISSN: 2168-9229</identifier><identifier>EISBN: 9798350363517</identifier><identifier>DOI: 10.1109/SENSORS60989.2024.10785123</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Bed Monitoring System ; Image recognition ; Monitoring ; Older adults ; Posture recognition ; Recording ; Safety ; Sensor systems ; Thermal sensors ; Transformers ; Vision-Language Pretraining (VLP) ; Visualization</subject><ispartof>Proceedings of IEEE Sensors ..., 2024, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10785123$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10785123$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hsieh, Ping-Hung</creatorcontrib><creatorcontrib>Lee, Po-Ting</creatorcontrib><creatorcontrib>Yang, Jia-Han</creatorcontrib><creatorcontrib>Sung, Pi-Shan</creatorcontrib><creatorcontrib>Lin, Chih-Lung</creatorcontrib><title>Thermal Image-Based Bed Monitoring System Using VLP Model for Elderly Fall Prevention</title><title>Proceedings of IEEE Sensors ...</title><addtitle>SENSORS</addtitle><description>Falls occur when elderly individuals get out of bed alone and can cause serious injuries to them. Bed monitoring systems monitor the postures of the elderly near the bed to prevent them from falls. Integrating bed monitoring systems with electronic health records (EHRs) aids caregivers in assessing the elderly's risk of falls. This work proposes a bed monitoring system that uses a Vision-Language Pre-training (VLP) model to generate captions of a person's posture in bed for EHRs. The proposed system uses thermal images to identify a person's posture without compromising privacy. These thermal images are then converted into visual representations with a fine-tuned vision transformer and fed into the VLP model to obtain captions. The proposed system achieves 100% accuracy in generating captions for 770 thermal images across ten postures from ten participants, demonstrating its capability to recognize human postures and generate recordings for EHRs, thereby enhancing safety for the elderly.</description><subject>Accuracy</subject><subject>Bed Monitoring System</subject><subject>Image recognition</subject><subject>Monitoring</subject><subject>Older adults</subject><subject>Posture recognition</subject><subject>Recording</subject><subject>Safety</subject><subject>Sensor systems</subject><subject>Thermal sensors</subject><subject>Transformers</subject><subject>Vision-Language Pretraining (VLP)</subject><subject>Visualization</subject><issn>2168-9229</issn><isbn>9798350363517</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFjk9rgzAYh7PCYP3jN9gh7K57k0xNrg5LC9taat1VAr66jKgjkYHfvi205x5-PDw8lx8hLwwixkC9FvlXsTsUCSipIg78LWKQyphx8UAClSopYhCJiFk6I3POEhkqztUTWXj_C8Ah5nJOyuMPuk5buu10i2GmPdY0O-9z6M04ONO3tJj8iB0t_UW-P_bnVqOlzeBobmt0dqJrbS3dO_zHfjRDvyKPjbYegyuX5HmdH983oUHE6s-ZTruput0Vd_IJ-iZD6Q</recordid><startdate>20241020</startdate><enddate>20241020</enddate><creator>Hsieh, Ping-Hung</creator><creator>Lee, Po-Ting</creator><creator>Yang, Jia-Han</creator><creator>Sung, Pi-Shan</creator><creator>Lin, Chih-Lung</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20241020</creationdate><title>Thermal Image-Based Bed Monitoring System Using VLP Model for Elderly Fall Prevention</title><author>Hsieh, Ping-Hung ; Lee, Po-Ting ; Yang, Jia-Han ; Sung, Pi-Shan ; Lin, Chih-Lung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_107851233</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Bed Monitoring System</topic><topic>Image recognition</topic><topic>Monitoring</topic><topic>Older adults</topic><topic>Posture recognition</topic><topic>Recording</topic><topic>Safety</topic><topic>Sensor systems</topic><topic>Thermal sensors</topic><topic>Transformers</topic><topic>Vision-Language Pretraining (VLP)</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Hsieh, Ping-Hung</creatorcontrib><creatorcontrib>Lee, Po-Ting</creatorcontrib><creatorcontrib>Yang, Jia-Han</creatorcontrib><creatorcontrib>Sung, Pi-Shan</creatorcontrib><creatorcontrib>Lin, Chih-Lung</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hsieh, Ping-Hung</au><au>Lee, Po-Ting</au><au>Yang, Jia-Han</au><au>Sung, Pi-Shan</au><au>Lin, Chih-Lung</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Thermal Image-Based Bed Monitoring System Using VLP Model for Elderly Fall Prevention</atitle><btitle>Proceedings of IEEE Sensors ...</btitle><stitle>SENSORS</stitle><date>2024-10-20</date><risdate>2024</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><eissn>2168-9229</eissn><eisbn>9798350363517</eisbn><abstract>Falls occur when elderly individuals get out of bed alone and can cause serious injuries to them. Bed monitoring systems monitor the postures of the elderly near the bed to prevent them from falls. Integrating bed monitoring systems with electronic health records (EHRs) aids caregivers in assessing the elderly's risk of falls. This work proposes a bed monitoring system that uses a Vision-Language Pre-training (VLP) model to generate captions of a person's posture in bed for EHRs. The proposed system uses thermal images to identify a person's posture without compromising privacy. These thermal images are then converted into visual representations with a fine-tuned vision transformer and fed into the VLP model to obtain captions. The proposed system achieves 100% accuracy in generating captions for 770 thermal images across ten postures from ten participants, demonstrating its capability to recognize human postures and generate recordings for EHRs, thereby enhancing safety for the elderly.</abstract><pub>IEEE</pub><doi>10.1109/SENSORS60989.2024.10785123</doi></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2168-9229
ispartof Proceedings of IEEE Sensors ..., 2024, p.1-4
issn 2168-9229
language eng
recordid cdi_ieee_primary_10785123
source IEEE Xplore All Conference Series
subjects Accuracy
Bed Monitoring System
Image recognition
Monitoring
Older adults
Posture recognition
Recording
Safety
Sensor systems
Thermal sensors
Transformers
Vision-Language Pretraining (VLP)
Visualization
title Thermal Image-Based Bed Monitoring System Using VLP Model for Elderly Fall Prevention
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A27%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Thermal%20Image-Based%20Bed%20Monitoring%20System%20Using%20VLP%20Model%20for%20Elderly%20Fall%20Prevention&rft.btitle=Proceedings%20of%20IEEE%20Sensors%20...&rft.au=Hsieh,%20Ping-Hung&rft.date=2024-10-20&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.eissn=2168-9229&rft_id=info:doi/10.1109/SENSORS60989.2024.10785123&rft.eisbn=9798350363517&rft_dat=%3Cieee_CHZPO%3E10785123%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_107851233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10785123&rfr_iscdi=true