Loading…

Effectiveness of Privacy-Preserving Algorithms for Large Language Models: A Benchmark Analysis

Recently, several privacy-preserving algorithms for NLP have emerged. These algorithms can be suitable for LLMs as they can protect both training and query data. However, there is no benchmark exists to guide the evaluation of these algorithms when applied to LLMs. This paper presents a benchmark fr...

Full description

Saved in:
Bibliographic Details
Main Authors: Sun, Jinglin, Suleiman, Basem, Ullah, Imdad
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Sun, Jinglin
Suleiman, Basem
Ullah, Imdad
description Recently, several privacy-preserving algorithms for NLP have emerged. These algorithms can be suitable for LLMs as they can protect both training and query data. However, there is no benchmark exists to guide the evaluation of these algorithms when applied to LLMs. This paper presents a benchmark framework for evaluating the effectiveness of privacy-preserving algorithms applied to training and query data for fine-tuning LLMs under various scenarios. The proposed benchmark is designed to be transferable, enabling researchers to assess other privacy-preserving algorithms and LLMs. The benchmark focuses on assessing the privacy-preserving algorithms on training and query data when fine-tuning LLMs in various scenarios. We evaluated the Santext+ algorithm on the open-source Llama2-7b LLM using a sensitive medical transcription dataset. Results demonstrate the algorithm's effectiveness while highlighting the importance of considering specific situations when determining algorithm parameters. This work aims to facilitate the development and evaluation of effective privacy-preserving algorithms for LLMs, contributing to the creation of trusted LLMs that mitigate concerns regarding the misuse of sensitive information.
doi_str_mv 10.1109/PST62714.2024.10788045
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10788045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10788045</ieee_id><sourcerecordid>10788045</sourcerecordid><originalsourceid>FETCH-ieee_primary_107880453</originalsourceid><addsrcrecordid>eNqFjs1Kw0AUhUehYLF5A5F5gcQ7P80k7tJS6UIh0K5bhngnHU0nZW4byNubha7dnHPg-xaHsWcBmRBQvtS7fS6N0JkEqTMBpihAL-9YUpqyUEtQuYEyv2dzmWuV6sl6YAnRFwAoCcpoOWeHjXPYXP2AAYl473gd_WCbMa0jEsbBh5ZXXdtHfz2dibs-8ncbW5wytDc7jY_-Ezt65RVfYWhOZxu_eRVsN5KnBZs52xEmv_3Int42-_U29Yh4vEQ_2ePx77r6B_8AnYZHfA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Effectiveness of Privacy-Preserving Algorithms for Large Language Models: A Benchmark Analysis</title><source>IEEE Xplore All Conference Series</source><creator>Sun, Jinglin ; Suleiman, Basem ; Ullah, Imdad</creator><creatorcontrib>Sun, Jinglin ; Suleiman, Basem ; Ullah, Imdad</creatorcontrib><description>Recently, several privacy-preserving algorithms for NLP have emerged. These algorithms can be suitable for LLMs as they can protect both training and query data. However, there is no benchmark exists to guide the evaluation of these algorithms when applied to LLMs. This paper presents a benchmark framework for evaluating the effectiveness of privacy-preserving algorithms applied to training and query data for fine-tuning LLMs under various scenarios. The proposed benchmark is designed to be transferable, enabling researchers to assess other privacy-preserving algorithms and LLMs. The benchmark focuses on assessing the privacy-preserving algorithms on training and query data when fine-tuning LLMs in various scenarios. We evaluated the Santext+ algorithm on the open-source Llama2-7b LLM using a sensitive medical transcription dataset. Results demonstrate the algorithm's effectiveness while highlighting the importance of considering specific situations when determining algorithm parameters. This work aims to facilitate the development and evaluation of effective privacy-preserving algorithms for LLMs, contributing to the creation of trusted LLMs that mitigate concerns regarding the misuse of sensitive information.</description><identifier>EISSN: 2643-4202</identifier><identifier>EISBN: 9798350367096</identifier><identifier>DOI: 10.1109/PST62714.2024.10788045</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Benchmark testing ; benchmarks ; Data models ; Data privacy ; differential privacy ; large language models ; Measurement ; Organizations ; Privacy ; privacy-preserving algorithms ; Protection ; Security ; Training</subject><ispartof>Annual International Conference on Privacy, Security and Trust (Online), 2024, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10788045$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10788045$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sun, Jinglin</creatorcontrib><creatorcontrib>Suleiman, Basem</creatorcontrib><creatorcontrib>Ullah, Imdad</creatorcontrib><title>Effectiveness of Privacy-Preserving Algorithms for Large Language Models: A Benchmark Analysis</title><title>Annual International Conference on Privacy, Security and Trust (Online)</title><addtitle>PST</addtitle><description>Recently, several privacy-preserving algorithms for NLP have emerged. These algorithms can be suitable for LLMs as they can protect both training and query data. However, there is no benchmark exists to guide the evaluation of these algorithms when applied to LLMs. This paper presents a benchmark framework for evaluating the effectiveness of privacy-preserving algorithms applied to training and query data for fine-tuning LLMs under various scenarios. The proposed benchmark is designed to be transferable, enabling researchers to assess other privacy-preserving algorithms and LLMs. The benchmark focuses on assessing the privacy-preserving algorithms on training and query data when fine-tuning LLMs in various scenarios. We evaluated the Santext+ algorithm on the open-source Llama2-7b LLM using a sensitive medical transcription dataset. Results demonstrate the algorithm's effectiveness while highlighting the importance of considering specific situations when determining algorithm parameters. This work aims to facilitate the development and evaluation of effective privacy-preserving algorithms for LLMs, contributing to the creation of trusted LLMs that mitigate concerns regarding the misuse of sensitive information.</description><subject>Adaptation models</subject><subject>Benchmark testing</subject><subject>benchmarks</subject><subject>Data models</subject><subject>Data privacy</subject><subject>differential privacy</subject><subject>large language models</subject><subject>Measurement</subject><subject>Organizations</subject><subject>Privacy</subject><subject>privacy-preserving algorithms</subject><subject>Protection</subject><subject>Security</subject><subject>Training</subject><issn>2643-4202</issn><isbn>9798350367096</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFjs1Kw0AUhUehYLF5A5F5gcQ7P80k7tJS6UIh0K5bhngnHU0nZW4byNubha7dnHPg-xaHsWcBmRBQvtS7fS6N0JkEqTMBpihAL-9YUpqyUEtQuYEyv2dzmWuV6sl6YAnRFwAoCcpoOWeHjXPYXP2AAYl473gd_WCbMa0jEsbBh5ZXXdtHfz2dibs-8ncbW5wytDc7jY_-Ezt65RVfYWhOZxu_eRVsN5KnBZs52xEmv_3Int42-_U29Yh4vEQ_2ePx77r6B_8AnYZHfA</recordid><startdate>20240828</startdate><enddate>20240828</enddate><creator>Sun, Jinglin</creator><creator>Suleiman, Basem</creator><creator>Ullah, Imdad</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240828</creationdate><title>Effectiveness of Privacy-Preserving Algorithms for Large Language Models: A Benchmark Analysis</title><author>Sun, Jinglin ; Suleiman, Basem ; Ullah, Imdad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_107880453</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Benchmark testing</topic><topic>benchmarks</topic><topic>Data models</topic><topic>Data privacy</topic><topic>differential privacy</topic><topic>large language models</topic><topic>Measurement</topic><topic>Organizations</topic><topic>Privacy</topic><topic>privacy-preserving algorithms</topic><topic>Protection</topic><topic>Security</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Sun, Jinglin</creatorcontrib><creatorcontrib>Suleiman, Basem</creatorcontrib><creatorcontrib>Ullah, Imdad</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sun, Jinglin</au><au>Suleiman, Basem</au><au>Ullah, Imdad</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Effectiveness of Privacy-Preserving Algorithms for Large Language Models: A Benchmark Analysis</atitle><btitle>Annual International Conference on Privacy, Security and Trust (Online)</btitle><stitle>PST</stitle><date>2024-08-28</date><risdate>2024</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><eissn>2643-4202</eissn><eisbn>9798350367096</eisbn><abstract>Recently, several privacy-preserving algorithms for NLP have emerged. These algorithms can be suitable for LLMs as they can protect both training and query data. However, there is no benchmark exists to guide the evaluation of these algorithms when applied to LLMs. This paper presents a benchmark framework for evaluating the effectiveness of privacy-preserving algorithms applied to training and query data for fine-tuning LLMs under various scenarios. The proposed benchmark is designed to be transferable, enabling researchers to assess other privacy-preserving algorithms and LLMs. The benchmark focuses on assessing the privacy-preserving algorithms on training and query data when fine-tuning LLMs in various scenarios. We evaluated the Santext+ algorithm on the open-source Llama2-7b LLM using a sensitive medical transcription dataset. Results demonstrate the algorithm's effectiveness while highlighting the importance of considering specific situations when determining algorithm parameters. This work aims to facilitate the development and evaluation of effective privacy-preserving algorithms for LLMs, contributing to the creation of trusted LLMs that mitigate concerns regarding the misuse of sensitive information.</abstract><pub>IEEE</pub><doi>10.1109/PST62714.2024.10788045</doi></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2643-4202
ispartof Annual International Conference on Privacy, Security and Trust (Online), 2024, p.1-8
issn 2643-4202
language eng
recordid cdi_ieee_primary_10788045
source IEEE Xplore All Conference Series
subjects Adaptation models
Benchmark testing
benchmarks
Data models
Data privacy
differential privacy
large language models
Measurement
Organizations
Privacy
privacy-preserving algorithms
Protection
Security
Training
title Effectiveness of Privacy-Preserving Algorithms for Large Language Models: A Benchmark Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A22%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Effectiveness%20of%20Privacy-Preserving%20Algorithms%20for%20Large%20Language%20Models:%20A%20Benchmark%20Analysis&rft.btitle=Annual%20International%20Conference%20on%20Privacy,%20Security%20and%20Trust%20(Online)&rft.au=Sun,%20Jinglin&rft.date=2024-08-28&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.eissn=2643-4202&rft_id=info:doi/10.1109/PST62714.2024.10788045&rft.eisbn=9798350367096&rft_dat=%3Cieee_CHZPO%3E10788045%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_107880453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10788045&rfr_iscdi=true