Loading…
Effectiveness of Privacy-Preserving Algorithms for Large Language Models: A Benchmark Analysis
Recently, several privacy-preserving algorithms for NLP have emerged. These algorithms can be suitable for LLMs as they can protect both training and query data. However, there is no benchmark exists to guide the evaluation of these algorithms when applied to LLMs. This paper presents a benchmark fr...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 8 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Sun, Jinglin Suleiman, Basem Ullah, Imdad |
description | Recently, several privacy-preserving algorithms for NLP have emerged. These algorithms can be suitable for LLMs as they can protect both training and query data. However, there is no benchmark exists to guide the evaluation of these algorithms when applied to LLMs. This paper presents a benchmark framework for evaluating the effectiveness of privacy-preserving algorithms applied to training and query data for fine-tuning LLMs under various scenarios. The proposed benchmark is designed to be transferable, enabling researchers to assess other privacy-preserving algorithms and LLMs. The benchmark focuses on assessing the privacy-preserving algorithms on training and query data when fine-tuning LLMs in various scenarios. We evaluated the Santext+ algorithm on the open-source Llama2-7b LLM using a sensitive medical transcription dataset. Results demonstrate the algorithm's effectiveness while highlighting the importance of considering specific situations when determining algorithm parameters. This work aims to facilitate the development and evaluation of effective privacy-preserving algorithms for LLMs, contributing to the creation of trusted LLMs that mitigate concerns regarding the misuse of sensitive information. |
doi_str_mv | 10.1109/PST62714.2024.10788045 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10788045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10788045</ieee_id><sourcerecordid>10788045</sourcerecordid><originalsourceid>FETCH-ieee_primary_107880453</originalsourceid><addsrcrecordid>eNqFjs1Kw0AUhUehYLF5A5F5gcQ7P80k7tJS6UIh0K5bhngnHU0nZW4byNubha7dnHPg-xaHsWcBmRBQvtS7fS6N0JkEqTMBpihAL-9YUpqyUEtQuYEyv2dzmWuV6sl6YAnRFwAoCcpoOWeHjXPYXP2AAYl473gd_WCbMa0jEsbBh5ZXXdtHfz2dibs-8ncbW5wytDc7jY_-Ezt65RVfYWhOZxu_eRVsN5KnBZs52xEmv_3Int42-_U29Yh4vEQ_2ePx77r6B_8AnYZHfA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Effectiveness of Privacy-Preserving Algorithms for Large Language Models: A Benchmark Analysis</title><source>IEEE Xplore All Conference Series</source><creator>Sun, Jinglin ; Suleiman, Basem ; Ullah, Imdad</creator><creatorcontrib>Sun, Jinglin ; Suleiman, Basem ; Ullah, Imdad</creatorcontrib><description>Recently, several privacy-preserving algorithms for NLP have emerged. These algorithms can be suitable for LLMs as they can protect both training and query data. However, there is no benchmark exists to guide the evaluation of these algorithms when applied to LLMs. This paper presents a benchmark framework for evaluating the effectiveness of privacy-preserving algorithms applied to training and query data for fine-tuning LLMs under various scenarios. The proposed benchmark is designed to be transferable, enabling researchers to assess other privacy-preserving algorithms and LLMs. The benchmark focuses on assessing the privacy-preserving algorithms on training and query data when fine-tuning LLMs in various scenarios. We evaluated the Santext+ algorithm on the open-source Llama2-7b LLM using a sensitive medical transcription dataset. Results demonstrate the algorithm's effectiveness while highlighting the importance of considering specific situations when determining algorithm parameters. This work aims to facilitate the development and evaluation of effective privacy-preserving algorithms for LLMs, contributing to the creation of trusted LLMs that mitigate concerns regarding the misuse of sensitive information.</description><identifier>EISSN: 2643-4202</identifier><identifier>EISBN: 9798350367096</identifier><identifier>DOI: 10.1109/PST62714.2024.10788045</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Benchmark testing ; benchmarks ; Data models ; Data privacy ; differential privacy ; large language models ; Measurement ; Organizations ; Privacy ; privacy-preserving algorithms ; Protection ; Security ; Training</subject><ispartof>Annual International Conference on Privacy, Security and Trust (Online), 2024, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10788045$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10788045$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sun, Jinglin</creatorcontrib><creatorcontrib>Suleiman, Basem</creatorcontrib><creatorcontrib>Ullah, Imdad</creatorcontrib><title>Effectiveness of Privacy-Preserving Algorithms for Large Language Models: A Benchmark Analysis</title><title>Annual International Conference on Privacy, Security and Trust (Online)</title><addtitle>PST</addtitle><description>Recently, several privacy-preserving algorithms for NLP have emerged. These algorithms can be suitable for LLMs as they can protect both training and query data. However, there is no benchmark exists to guide the evaluation of these algorithms when applied to LLMs. This paper presents a benchmark framework for evaluating the effectiveness of privacy-preserving algorithms applied to training and query data for fine-tuning LLMs under various scenarios. The proposed benchmark is designed to be transferable, enabling researchers to assess other privacy-preserving algorithms and LLMs. The benchmark focuses on assessing the privacy-preserving algorithms on training and query data when fine-tuning LLMs in various scenarios. We evaluated the Santext+ algorithm on the open-source Llama2-7b LLM using a sensitive medical transcription dataset. Results demonstrate the algorithm's effectiveness while highlighting the importance of considering specific situations when determining algorithm parameters. This work aims to facilitate the development and evaluation of effective privacy-preserving algorithms for LLMs, contributing to the creation of trusted LLMs that mitigate concerns regarding the misuse of sensitive information.</description><subject>Adaptation models</subject><subject>Benchmark testing</subject><subject>benchmarks</subject><subject>Data models</subject><subject>Data privacy</subject><subject>differential privacy</subject><subject>large language models</subject><subject>Measurement</subject><subject>Organizations</subject><subject>Privacy</subject><subject>privacy-preserving algorithms</subject><subject>Protection</subject><subject>Security</subject><subject>Training</subject><issn>2643-4202</issn><isbn>9798350367096</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFjs1Kw0AUhUehYLF5A5F5gcQ7P80k7tJS6UIh0K5bhngnHU0nZW4byNubha7dnHPg-xaHsWcBmRBQvtS7fS6N0JkEqTMBpihAL-9YUpqyUEtQuYEyv2dzmWuV6sl6YAnRFwAoCcpoOWeHjXPYXP2AAYl473gd_WCbMa0jEsbBh5ZXXdtHfz2dibs-8ncbW5wytDc7jY_-Ezt65RVfYWhOZxu_eRVsN5KnBZs52xEmv_3Int42-_U29Yh4vEQ_2ePx77r6B_8AnYZHfA</recordid><startdate>20240828</startdate><enddate>20240828</enddate><creator>Sun, Jinglin</creator><creator>Suleiman, Basem</creator><creator>Ullah, Imdad</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240828</creationdate><title>Effectiveness of Privacy-Preserving Algorithms for Large Language Models: A Benchmark Analysis</title><author>Sun, Jinglin ; Suleiman, Basem ; Ullah, Imdad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_107880453</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Benchmark testing</topic><topic>benchmarks</topic><topic>Data models</topic><topic>Data privacy</topic><topic>differential privacy</topic><topic>large language models</topic><topic>Measurement</topic><topic>Organizations</topic><topic>Privacy</topic><topic>privacy-preserving algorithms</topic><topic>Protection</topic><topic>Security</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Sun, Jinglin</creatorcontrib><creatorcontrib>Suleiman, Basem</creatorcontrib><creatorcontrib>Ullah, Imdad</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sun, Jinglin</au><au>Suleiman, Basem</au><au>Ullah, Imdad</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Effectiveness of Privacy-Preserving Algorithms for Large Language Models: A Benchmark Analysis</atitle><btitle>Annual International Conference on Privacy, Security and Trust (Online)</btitle><stitle>PST</stitle><date>2024-08-28</date><risdate>2024</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><eissn>2643-4202</eissn><eisbn>9798350367096</eisbn><abstract>Recently, several privacy-preserving algorithms for NLP have emerged. These algorithms can be suitable for LLMs as they can protect both training and query data. However, there is no benchmark exists to guide the evaluation of these algorithms when applied to LLMs. This paper presents a benchmark framework for evaluating the effectiveness of privacy-preserving algorithms applied to training and query data for fine-tuning LLMs under various scenarios. The proposed benchmark is designed to be transferable, enabling researchers to assess other privacy-preserving algorithms and LLMs. The benchmark focuses on assessing the privacy-preserving algorithms on training and query data when fine-tuning LLMs in various scenarios. We evaluated the Santext+ algorithm on the open-source Llama2-7b LLM using a sensitive medical transcription dataset. Results demonstrate the algorithm's effectiveness while highlighting the importance of considering specific situations when determining algorithm parameters. This work aims to facilitate the development and evaluation of effective privacy-preserving algorithms for LLMs, contributing to the creation of trusted LLMs that mitigate concerns regarding the misuse of sensitive information.</abstract><pub>IEEE</pub><doi>10.1109/PST62714.2024.10788045</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2643-4202 |
ispartof | Annual International Conference on Privacy, Security and Trust (Online), 2024, p.1-8 |
issn | 2643-4202 |
language | eng |
recordid | cdi_ieee_primary_10788045 |
source | IEEE Xplore All Conference Series |
subjects | Adaptation models Benchmark testing benchmarks Data models Data privacy differential privacy large language models Measurement Organizations Privacy privacy-preserving algorithms Protection Security Training |
title | Effectiveness of Privacy-Preserving Algorithms for Large Language Models: A Benchmark Analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A22%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Effectiveness%20of%20Privacy-Preserving%20Algorithms%20for%20Large%20Language%20Models:%20A%20Benchmark%20Analysis&rft.btitle=Annual%20International%20Conference%20on%20Privacy,%20Security%20and%20Trust%20(Online)&rft.au=Sun,%20Jinglin&rft.date=2024-08-28&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.eissn=2643-4202&rft_id=info:doi/10.1109/PST62714.2024.10788045&rft.eisbn=9798350367096&rft_dat=%3Cieee_CHZPO%3E10788045%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_107880453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10788045&rfr_iscdi=true |