Loading…

Conformal Symplectic Optimization for Stable Reinforcement Learning

Training deep reinforcement learning (RL) agents necessitates overcoming the highly unstable nonconvex stochastic optimization inherent in the trial-and-error mechanism. To tackle this challenge, we propose a physics-inspired optimization algorithm called relativistic adaptive gradient descent (RAD)...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems 2024-12, p.1-15
Main Authors: Lyu, Yao, Zhang, Xiangteng, Li, Shengbo Eben, Duan, Jingliang, Tao, Letian, Xu, Qing, He, Lei, Li, Keqiang
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 15
container_issue
container_start_page 1
container_title IEEE transaction on neural networks and learning systems
container_volume
creator Lyu, Yao
Zhang, Xiangteng
Li, Shengbo Eben
Duan, Jingliang
Tao, Letian
Xu, Qing
He, Lei
Li, Keqiang
description Training deep reinforcement learning (RL) agents necessitates overcoming the highly unstable nonconvex stochastic optimization inherent in the trial-and-error mechanism. To tackle this challenge, we propose a physics-inspired optimization algorithm called relativistic adaptive gradient descent (RAD), which enhances long-term training stability. By conceptualizing neural network (NN) training as the evolution of a conformal Hamiltonian system, we present a universal framework for transferring long-term stability from conformal symplectic integrators to iterative NN updating rules, where the choice of kinetic energy governs the dynamical properties of resulting optimization algorithms. By utilizing relativistic kinetic energy, RAD incorporates principles from special relativity and limits parameter updates below a finite speed, effectively mitigating abnormal gradient influences. In addition, RAD models NN optimization as the evolution of a multiparticle system where each trainable parameter acts as an independent particle with an individual adaptive learning rate. We prove RAD's sublinear convergence under general nonconvex settings, where smaller gradient variance and larger batch sizes contribute to tighter convergence. Notably, RAD degrades to the well-known adaptive moment estimation (ADAM) algorithm when its speed coefficient is chosen as one and symplectic factor as a small positive value. Experimental results show RAD outperforming nine baseline optimizers with five RL algorithms across twelve environments, including standard benchmarks and challenging scenarios. Notably, RAD achieves up to a 155.1% performance improvement over ADAM in Atari games, showcasing its efficacy in stabilizing and accelerating RL training.
doi_str_mv 10.1109/TNNLS.2024.3511670
format article
fullrecord <record><control><sourceid>ieee</sourceid><recordid>TN_cdi_ieee_primary_10792938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10792938</ieee_id><sourcerecordid>10792938</sourcerecordid><originalsourceid>FETCH-LOGICAL-i650-b2923e59d960a1e74c5839ed436b7682347ca5cfecfcd6d2ca774523bb4620a63</originalsourceid><addsrcrecordid>eNotjL1qwzAURjW00JDmBUoGvYBd6Uq6ssZi-gcmgdpDtyDL10HFf9he0qdvSvstZziHj7EHKVIphXusDoeiTEGATpWREq24YRuQCAko-3nHdsvyJa5DYVC7DcvzcWjHufcdLy_91FFYY-DHaY19_PZrHAd-1bxcfd0R_6D4WwfqaVh5QX4e4nC-Z7et7xba_XPLqpfnKn9LiuPre_5UJBGNSGpwoMi4xqHwkqwOJlOOGq2wtpiB0jZ4E1oKbWiwgeCt1QZUXWsE4VFt2f7vNhLRaZpj7-fLSQrrwKlM_QBji0lI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Conformal Symplectic Optimization for Stable Reinforcement Learning</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lyu, Yao ; Zhang, Xiangteng ; Li, Shengbo Eben ; Duan, Jingliang ; Tao, Letian ; Xu, Qing ; He, Lei ; Li, Keqiang</creator><creatorcontrib>Lyu, Yao ; Zhang, Xiangteng ; Li, Shengbo Eben ; Duan, Jingliang ; Tao, Letian ; Xu, Qing ; He, Lei ; Li, Keqiang</creatorcontrib><description>Training deep reinforcement learning (RL) agents necessitates overcoming the highly unstable nonconvex stochastic optimization inherent in the trial-and-error mechanism. To tackle this challenge, we propose a physics-inspired optimization algorithm called relativistic adaptive gradient descent (RAD), which enhances long-term training stability. By conceptualizing neural network (NN) training as the evolution of a conformal Hamiltonian system, we present a universal framework for transferring long-term stability from conformal symplectic integrators to iterative NN updating rules, where the choice of kinetic energy governs the dynamical properties of resulting optimization algorithms. By utilizing relativistic kinetic energy, RAD incorporates principles from special relativity and limits parameter updates below a finite speed, effectively mitigating abnormal gradient influences. In addition, RAD models NN optimization as the evolution of a multiparticle system where each trainable parameter acts as an independent particle with an individual adaptive learning rate. We prove RAD's sublinear convergence under general nonconvex settings, where smaller gradient variance and larger batch sizes contribute to tighter convergence. Notably, RAD degrades to the well-known adaptive moment estimation (ADAM) algorithm when its speed coefficient is chosen as one and symplectic factor as a small positive value. Experimental results show RAD outperforming nine baseline optimizers with five RL algorithms across twelve environments, including standard benchmarks and challenging scenarios. Notably, RAD achieves up to a 155.1% performance improvement over ADAM in Atari games, showcasing its efficacy in stabilizing and accelerating RL training.</description><identifier>ISSN: 2162-237X</identifier><identifier>DOI: 10.1109/TNNLS.2024.3511670</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Conformal Hamiltonian ; Convergence ; Dynamical systems ; Heuristic algorithms ; Kinetic energy ; nonconvex stochastic optimization ; Optimization ; reinforcement learning (RL) ; Stability criteria ; Stochastic processes ; symplectic preservation ; Thermal stability ; Training ; training stability</subject><ispartof>IEEE transaction on neural networks and learning systems, 2024-12, p.1-15</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>duanjl@ustb.edu.cn ; helei2023@tsinghua.edu.cn ; y-lv19@mails.tsinghua.edu.cn ; lisb04@gmail.com ; likq@tsinghua.edu.cn ; zhangxt22@mails.tsinghua.edu.cn ; qingxu@tsinghua.edu.cn</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10792938$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Lyu, Yao</creatorcontrib><creatorcontrib>Zhang, Xiangteng</creatorcontrib><creatorcontrib>Li, Shengbo Eben</creatorcontrib><creatorcontrib>Duan, Jingliang</creatorcontrib><creatorcontrib>Tao, Letian</creatorcontrib><creatorcontrib>Xu, Qing</creatorcontrib><creatorcontrib>He, Lei</creatorcontrib><creatorcontrib>Li, Keqiang</creatorcontrib><title>Conformal Symplectic Optimization for Stable Reinforcement Learning</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><description>Training deep reinforcement learning (RL) agents necessitates overcoming the highly unstable nonconvex stochastic optimization inherent in the trial-and-error mechanism. To tackle this challenge, we propose a physics-inspired optimization algorithm called relativistic adaptive gradient descent (RAD), which enhances long-term training stability. By conceptualizing neural network (NN) training as the evolution of a conformal Hamiltonian system, we present a universal framework for transferring long-term stability from conformal symplectic integrators to iterative NN updating rules, where the choice of kinetic energy governs the dynamical properties of resulting optimization algorithms. By utilizing relativistic kinetic energy, RAD incorporates principles from special relativity and limits parameter updates below a finite speed, effectively mitigating abnormal gradient influences. In addition, RAD models NN optimization as the evolution of a multiparticle system where each trainable parameter acts as an independent particle with an individual adaptive learning rate. We prove RAD's sublinear convergence under general nonconvex settings, where smaller gradient variance and larger batch sizes contribute to tighter convergence. Notably, RAD degrades to the well-known adaptive moment estimation (ADAM) algorithm when its speed coefficient is chosen as one and symplectic factor as a small positive value. Experimental results show RAD outperforming nine baseline optimizers with five RL algorithms across twelve environments, including standard benchmarks and challenging scenarios. Notably, RAD achieves up to a 155.1% performance improvement over ADAM in Atari games, showcasing its efficacy in stabilizing and accelerating RL training.</description><subject>Artificial neural networks</subject><subject>Conformal Hamiltonian</subject><subject>Convergence</subject><subject>Dynamical systems</subject><subject>Heuristic algorithms</subject><subject>Kinetic energy</subject><subject>nonconvex stochastic optimization</subject><subject>Optimization</subject><subject>reinforcement learning (RL)</subject><subject>Stability criteria</subject><subject>Stochastic processes</subject><subject>symplectic preservation</subject><subject>Thermal stability</subject><subject>Training</subject><subject>training stability</subject><issn>2162-237X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotjL1qwzAURjW00JDmBUoGvYBd6Uq6ssZi-gcmgdpDtyDL10HFf9he0qdvSvstZziHj7EHKVIphXusDoeiTEGATpWREq24YRuQCAko-3nHdsvyJa5DYVC7DcvzcWjHufcdLy_91FFYY-DHaY19_PZrHAd-1bxcfd0R_6D4WwfqaVh5QX4e4nC-Z7et7xba_XPLqpfnKn9LiuPre_5UJBGNSGpwoMi4xqHwkqwOJlOOGq2wtpiB0jZ4E1oKbWiwgeCt1QZUXWsE4VFt2f7vNhLRaZpj7-fLSQrrwKlM_QBji0lI</recordid><startdate>20241210</startdate><enddate>20241210</enddate><creator>Lyu, Yao</creator><creator>Zhang, Xiangteng</creator><creator>Li, Shengbo Eben</creator><creator>Duan, Jingliang</creator><creator>Tao, Letian</creator><creator>Xu, Qing</creator><creator>He, Lei</creator><creator>Li, Keqiang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/duanjl@ustb.edu.cn</orcidid><orcidid>https://orcid.org/helei2023@tsinghua.edu.cn</orcidid><orcidid>https://orcid.org/y-lv19@mails.tsinghua.edu.cn</orcidid><orcidid>https://orcid.org/lisb04@gmail.com</orcidid><orcidid>https://orcid.org/likq@tsinghua.edu.cn</orcidid><orcidid>https://orcid.org/zhangxt22@mails.tsinghua.edu.cn</orcidid><orcidid>https://orcid.org/qingxu@tsinghua.edu.cn</orcidid></search><sort><creationdate>20241210</creationdate><title>Conformal Symplectic Optimization for Stable Reinforcement Learning</title><author>Lyu, Yao ; Zhang, Xiangteng ; Li, Shengbo Eben ; Duan, Jingliang ; Tao, Letian ; Xu, Qing ; He, Lei ; Li, Keqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i650-b2923e59d960a1e74c5839ed436b7682347ca5cfecfcd6d2ca774523bb4620a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Conformal Hamiltonian</topic><topic>Convergence</topic><topic>Dynamical systems</topic><topic>Heuristic algorithms</topic><topic>Kinetic energy</topic><topic>nonconvex stochastic optimization</topic><topic>Optimization</topic><topic>reinforcement learning (RL)</topic><topic>Stability criteria</topic><topic>Stochastic processes</topic><topic>symplectic preservation</topic><topic>Thermal stability</topic><topic>Training</topic><topic>training stability</topic><toplevel>online_resources</toplevel><creatorcontrib>Lyu, Yao</creatorcontrib><creatorcontrib>Zhang, Xiangteng</creatorcontrib><creatorcontrib>Li, Shengbo Eben</creatorcontrib><creatorcontrib>Duan, Jingliang</creatorcontrib><creatorcontrib>Tao, Letian</creatorcontrib><creatorcontrib>Xu, Qing</creatorcontrib><creatorcontrib>He, Lei</creatorcontrib><creatorcontrib>Li, Keqiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyu, Yao</au><au>Zhang, Xiangteng</au><au>Li, Shengbo Eben</au><au>Duan, Jingliang</au><au>Tao, Letian</au><au>Xu, Qing</au><au>He, Lei</au><au>Li, Keqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conformal Symplectic Optimization for Stable Reinforcement Learning</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><date>2024-12-10</date><risdate>2024</risdate><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>2162-237X</issn><coden>ITNNAL</coden><abstract>Training deep reinforcement learning (RL) agents necessitates overcoming the highly unstable nonconvex stochastic optimization inherent in the trial-and-error mechanism. To tackle this challenge, we propose a physics-inspired optimization algorithm called relativistic adaptive gradient descent (RAD), which enhances long-term training stability. By conceptualizing neural network (NN) training as the evolution of a conformal Hamiltonian system, we present a universal framework for transferring long-term stability from conformal symplectic integrators to iterative NN updating rules, where the choice of kinetic energy governs the dynamical properties of resulting optimization algorithms. By utilizing relativistic kinetic energy, RAD incorporates principles from special relativity and limits parameter updates below a finite speed, effectively mitigating abnormal gradient influences. In addition, RAD models NN optimization as the evolution of a multiparticle system where each trainable parameter acts as an independent particle with an individual adaptive learning rate. We prove RAD's sublinear convergence under general nonconvex settings, where smaller gradient variance and larger batch sizes contribute to tighter convergence. Notably, RAD degrades to the well-known adaptive moment estimation (ADAM) algorithm when its speed coefficient is chosen as one and symplectic factor as a small positive value. Experimental results show RAD outperforming nine baseline optimizers with five RL algorithms across twelve environments, including standard benchmarks and challenging scenarios. Notably, RAD achieves up to a 155.1% performance improvement over ADAM in Atari games, showcasing its efficacy in stabilizing and accelerating RL training.</abstract><pub>IEEE</pub><doi>10.1109/TNNLS.2024.3511670</doi><tpages>15</tpages><orcidid>https://orcid.org/duanjl@ustb.edu.cn</orcidid><orcidid>https://orcid.org/helei2023@tsinghua.edu.cn</orcidid><orcidid>https://orcid.org/y-lv19@mails.tsinghua.edu.cn</orcidid><orcidid>https://orcid.org/lisb04@gmail.com</orcidid><orcidid>https://orcid.org/likq@tsinghua.edu.cn</orcidid><orcidid>https://orcid.org/zhangxt22@mails.tsinghua.edu.cn</orcidid><orcidid>https://orcid.org/qingxu@tsinghua.edu.cn</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2024-12, p.1-15
issn 2162-237X
language eng
recordid cdi_ieee_primary_10792938
source IEEE Electronic Library (IEL) Journals
subjects Artificial neural networks
Conformal Hamiltonian
Convergence
Dynamical systems
Heuristic algorithms
Kinetic energy
nonconvex stochastic optimization
Optimization
reinforcement learning (RL)
Stability criteria
Stochastic processes
symplectic preservation
Thermal stability
Training
training stability
title Conformal Symplectic Optimization for Stable Reinforcement Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A02%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conformal%20Symplectic%20Optimization%20for%20Stable%20Reinforcement%20Learning&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Lyu,%20Yao&rft.date=2024-12-10&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=2162-237X&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2024.3511670&rft_dat=%3Cieee%3E10792938%3C/ieee%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i650-b2923e59d960a1e74c5839ed436b7682347ca5cfecfcd6d2ca774523bb4620a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10792938&rfr_iscdi=true