Loading…

Recent Research Study on AI-based Crime Scene Evidence Detection

Traditional crime scene evidence detection methods are time-consuming and prone to human error. In recent years, artificial intelligence (\mathbf{A I}) has revolutionized crime scene investigation by improving the detection and analysis of evidence. This review paper examines recent studies on AIbas...

Full description

Saved in:
Bibliographic Details
Main Authors: Murugan, Thangavel, Aldahmani, Fotoon Khaleifah Abdulla Mosabbas, Almehrzi, Ghalya Salem Mohamed Alshuraiqi, Alsereidi, Eiman Mohamed Salem Mohamed, Aldahmani, Aaesha Abdulla Khalfan Ali, Alahbabi, Eiman Mubarak Masoud
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Murugan, Thangavel
Aldahmani, Fotoon Khaleifah Abdulla Mosabbas
Almehrzi, Ghalya Salem Mohamed Alshuraiqi
Alsereidi, Eiman Mohamed Salem Mohamed
Aldahmani, Aaesha Abdulla Khalfan Ali
Alahbabi, Eiman Mubarak Masoud
description Traditional crime scene evidence detection methods are time-consuming and prone to human error. In recent years, artificial intelligence (\mathbf{A I}) has revolutionized crime scene investigation by improving the detection and analysis of evidence. This review paper examines recent studies on AIbased evidence detection from key crime scenes, such as weapons, footprints, and bloodstains. Researchers have used advanced AI algorithms to develop innovative techniques for accurately identifying and documenting these crucial pieces of evidence, which helps law enforcement agencies solve criminal cases more efficiently. The paper discusses various AI models and technologies for detecting weapons, footprints, and bloodstains at crime scenes, highlighting their strengths, limitations, and potential for future advancements. Overall, the paper emphasizes the importance of AI in enhancing crime scene investigation processes and advocates for further research and development in this rapidly evolving field to maximize its potential impact on criminal justice systems worldwide.
doi_str_mv 10.1109/CommNet63022.2024.10793266
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10793266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10793266</ieee_id><sourcerecordid>10793266</sourcerecordid><originalsourceid>FETCH-ieee_primary_107932663</originalsourceid><addsrcrecordid>eNqFjrEOgjAURauJiUT5A4fGHXx9RSqbBjW6OIA7QXhGjBRDqwl_L4POTnc45ySXsbkAXwiIFnFT1yeyoQREHwEDX4CKJIbhgLmRilZyCTJUgGrIHFRKeCoAHDPXmDsASIQAAnTYOqGCtOUJGcrb4sZT-yo73mi-OXqX3FDJ47aqiae9Rnz3rkrSBfEtWSps1egpG13zhyH3uxM22-_O8cGriCh79m3edtnvnPyDPwbcPUI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Recent Research Study on AI-based Crime Scene Evidence Detection</title><source>IEEE Xplore All Conference Series</source><creator>Murugan, Thangavel ; Aldahmani, Fotoon Khaleifah Abdulla Mosabbas ; Almehrzi, Ghalya Salem Mohamed Alshuraiqi ; Alsereidi, Eiman Mohamed Salem Mohamed ; Aldahmani, Aaesha Abdulla Khalfan Ali ; Alahbabi, Eiman Mubarak Masoud</creator><creatorcontrib>Murugan, Thangavel ; Aldahmani, Fotoon Khaleifah Abdulla Mosabbas ; Almehrzi, Ghalya Salem Mohamed Alshuraiqi ; Alsereidi, Eiman Mohamed Salem Mohamed ; Aldahmani, Aaesha Abdulla Khalfan Ali ; Alahbabi, Eiman Mubarak Masoud</creatorcontrib><description>Traditional crime scene evidence detection methods are time-consuming and prone to human error. In recent years, artificial intelligence (\mathbf{A I}) has revolutionized crime scene investigation by improving the detection and analysis of evidence. This review paper examines recent studies on AIbased evidence detection from key crime scenes, such as weapons, footprints, and bloodstains. Researchers have used advanced AI algorithms to develop innovative techniques for accurately identifying and documenting these crucial pieces of evidence, which helps law enforcement agencies solve criminal cases more efficiently. The paper discusses various AI models and technologies for detecting weapons, footprints, and bloodstains at crime scenes, highlighting their strengths, limitations, and potential for future advancements. Overall, the paper emphasizes the importance of AI in enhancing crime scene investigation processes and advocates for further research and development in this rapidly evolving field to maximize its potential impact on criminal justice systems worldwide.</description><identifier>EISSN: 2771-7402</identifier><identifier>EISBN: 9798350367027</identifier><identifier>DOI: 10.1109/CommNet63022.2024.10793266</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Artificial intelligence ; bloodstains ; crime scene ; evidence ; footprint ; Forensics ; Machine learning ; Machine learning algorithms ; Privacy ; Reliability ; Research and development ; Reviews ; weapon ; Weapons</subject><ispartof>International Conference on Advanced Communication Technologies and Networking (Online), 2024, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10793266$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10793266$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Murugan, Thangavel</creatorcontrib><creatorcontrib>Aldahmani, Fotoon Khaleifah Abdulla Mosabbas</creatorcontrib><creatorcontrib>Almehrzi, Ghalya Salem Mohamed Alshuraiqi</creatorcontrib><creatorcontrib>Alsereidi, Eiman Mohamed Salem Mohamed</creatorcontrib><creatorcontrib>Aldahmani, Aaesha Abdulla Khalfan Ali</creatorcontrib><creatorcontrib>Alahbabi, Eiman Mubarak Masoud</creatorcontrib><title>Recent Research Study on AI-based Crime Scene Evidence Detection</title><title>International Conference on Advanced Communication Technologies and Networking (Online)</title><addtitle>CommNet</addtitle><description>Traditional crime scene evidence detection methods are time-consuming and prone to human error. In recent years, artificial intelligence (\mathbf{A I}) has revolutionized crime scene investigation by improving the detection and analysis of evidence. This review paper examines recent studies on AIbased evidence detection from key crime scenes, such as weapons, footprints, and bloodstains. Researchers have used advanced AI algorithms to develop innovative techniques for accurately identifying and documenting these crucial pieces of evidence, which helps law enforcement agencies solve criminal cases more efficiently. The paper discusses various AI models and technologies for detecting weapons, footprints, and bloodstains at crime scenes, highlighting their strengths, limitations, and potential for future advancements. Overall, the paper emphasizes the importance of AI in enhancing crime scene investigation processes and advocates for further research and development in this rapidly evolving field to maximize its potential impact on criminal justice systems worldwide.</description><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>bloodstains</subject><subject>crime scene</subject><subject>evidence</subject><subject>footprint</subject><subject>Forensics</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Privacy</subject><subject>Reliability</subject><subject>Research and development</subject><subject>Reviews</subject><subject>weapon</subject><subject>Weapons</subject><issn>2771-7402</issn><isbn>9798350367027</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFjrEOgjAURauJiUT5A4fGHXx9RSqbBjW6OIA7QXhGjBRDqwl_L4POTnc45ySXsbkAXwiIFnFT1yeyoQREHwEDX4CKJIbhgLmRilZyCTJUgGrIHFRKeCoAHDPXmDsASIQAAnTYOqGCtOUJGcrb4sZT-yo73mi-OXqX3FDJ47aqiae9Rnz3rkrSBfEtWSps1egpG13zhyH3uxM22-_O8cGriCh79m3edtnvnPyDPwbcPUI</recordid><startdate>20241204</startdate><enddate>20241204</enddate><creator>Murugan, Thangavel</creator><creator>Aldahmani, Fotoon Khaleifah Abdulla Mosabbas</creator><creator>Almehrzi, Ghalya Salem Mohamed Alshuraiqi</creator><creator>Alsereidi, Eiman Mohamed Salem Mohamed</creator><creator>Aldahmani, Aaesha Abdulla Khalfan Ali</creator><creator>Alahbabi, Eiman Mubarak Masoud</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20241204</creationdate><title>Recent Research Study on AI-based Crime Scene Evidence Detection</title><author>Murugan, Thangavel ; Aldahmani, Fotoon Khaleifah Abdulla Mosabbas ; Almehrzi, Ghalya Salem Mohamed Alshuraiqi ; Alsereidi, Eiman Mohamed Salem Mohamed ; Aldahmani, Aaesha Abdulla Khalfan Ali ; Alahbabi, Eiman Mubarak Masoud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_107932663</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>bloodstains</topic><topic>crime scene</topic><topic>evidence</topic><topic>footprint</topic><topic>Forensics</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Privacy</topic><topic>Reliability</topic><topic>Research and development</topic><topic>Reviews</topic><topic>weapon</topic><topic>Weapons</topic><toplevel>online_resources</toplevel><creatorcontrib>Murugan, Thangavel</creatorcontrib><creatorcontrib>Aldahmani, Fotoon Khaleifah Abdulla Mosabbas</creatorcontrib><creatorcontrib>Almehrzi, Ghalya Salem Mohamed Alshuraiqi</creatorcontrib><creatorcontrib>Alsereidi, Eiman Mohamed Salem Mohamed</creatorcontrib><creatorcontrib>Aldahmani, Aaesha Abdulla Khalfan Ali</creatorcontrib><creatorcontrib>Alahbabi, Eiman Mubarak Masoud</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Murugan, Thangavel</au><au>Aldahmani, Fotoon Khaleifah Abdulla Mosabbas</au><au>Almehrzi, Ghalya Salem Mohamed Alshuraiqi</au><au>Alsereidi, Eiman Mohamed Salem Mohamed</au><au>Aldahmani, Aaesha Abdulla Khalfan Ali</au><au>Alahbabi, Eiman Mubarak Masoud</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Recent Research Study on AI-based Crime Scene Evidence Detection</atitle><btitle>International Conference on Advanced Communication Technologies and Networking (Online)</btitle><stitle>CommNet</stitle><date>2024-12-04</date><risdate>2024</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><eissn>2771-7402</eissn><eisbn>9798350367027</eisbn><abstract>Traditional crime scene evidence detection methods are time-consuming and prone to human error. In recent years, artificial intelligence (\mathbf{A I}) has revolutionized crime scene investigation by improving the detection and analysis of evidence. This review paper examines recent studies on AIbased evidence detection from key crime scenes, such as weapons, footprints, and bloodstains. Researchers have used advanced AI algorithms to develop innovative techniques for accurately identifying and documenting these crucial pieces of evidence, which helps law enforcement agencies solve criminal cases more efficiently. The paper discusses various AI models and technologies for detecting weapons, footprints, and bloodstains at crime scenes, highlighting their strengths, limitations, and potential for future advancements. Overall, the paper emphasizes the importance of AI in enhancing crime scene investigation processes and advocates for further research and development in this rapidly evolving field to maximize its potential impact on criminal justice systems worldwide.</abstract><pub>IEEE</pub><doi>10.1109/CommNet63022.2024.10793266</doi></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2771-7402
ispartof International Conference on Advanced Communication Technologies and Networking (Online), 2024, p.1-8
issn 2771-7402
language eng
recordid cdi_ieee_primary_10793266
source IEEE Xplore All Conference Series
subjects Accuracy
Artificial intelligence
bloodstains
crime scene
evidence
footprint
Forensics
Machine learning
Machine learning algorithms
Privacy
Reliability
Research and development
Reviews
weapon
Weapons
title Recent Research Study on AI-based Crime Scene Evidence Detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A38%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Recent%20Research%20Study%20on%20AI-based%20Crime%20Scene%20Evidence%20Detection&rft.btitle=International%20Conference%20on%20Advanced%20Communication%20Technologies%20and%20Networking%20(Online)&rft.au=Murugan,%20Thangavel&rft.date=2024-12-04&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.eissn=2771-7402&rft_id=info:doi/10.1109/CommNet63022.2024.10793266&rft.eisbn=9798350367027&rft_dat=%3Cieee_CHZPO%3E10793266%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_107932663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10793266&rfr_iscdi=true