Loading…
Recent Research Study on AI-based Crime Scene Evidence Detection
Traditional crime scene evidence detection methods are time-consuming and prone to human error. In recent years, artificial intelligence (\mathbf{A I}) has revolutionized crime scene investigation by improving the detection and analysis of evidence. This review paper examines recent studies on AIbas...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 8 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Murugan, Thangavel Aldahmani, Fotoon Khaleifah Abdulla Mosabbas Almehrzi, Ghalya Salem Mohamed Alshuraiqi Alsereidi, Eiman Mohamed Salem Mohamed Aldahmani, Aaesha Abdulla Khalfan Ali Alahbabi, Eiman Mubarak Masoud |
description | Traditional crime scene evidence detection methods are time-consuming and prone to human error. In recent years, artificial intelligence (\mathbf{A I}) has revolutionized crime scene investigation by improving the detection and analysis of evidence. This review paper examines recent studies on AIbased evidence detection from key crime scenes, such as weapons, footprints, and bloodstains. Researchers have used advanced AI algorithms to develop innovative techniques for accurately identifying and documenting these crucial pieces of evidence, which helps law enforcement agencies solve criminal cases more efficiently. The paper discusses various AI models and technologies for detecting weapons, footprints, and bloodstains at crime scenes, highlighting their strengths, limitations, and potential for future advancements. Overall, the paper emphasizes the importance of AI in enhancing crime scene investigation processes and advocates for further research and development in this rapidly evolving field to maximize its potential impact on criminal justice systems worldwide. |
doi_str_mv | 10.1109/CommNet63022.2024.10793266 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10793266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10793266</ieee_id><sourcerecordid>10793266</sourcerecordid><originalsourceid>FETCH-ieee_primary_107932663</originalsourceid><addsrcrecordid>eNqFjrEOgjAURauJiUT5A4fGHXx9RSqbBjW6OIA7QXhGjBRDqwl_L4POTnc45ySXsbkAXwiIFnFT1yeyoQREHwEDX4CKJIbhgLmRilZyCTJUgGrIHFRKeCoAHDPXmDsASIQAAnTYOqGCtOUJGcrb4sZT-yo73mi-OXqX3FDJ47aqiae9Rnz3rkrSBfEtWSps1egpG13zhyH3uxM22-_O8cGriCh79m3edtnvnPyDPwbcPUI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Recent Research Study on AI-based Crime Scene Evidence Detection</title><source>IEEE Xplore All Conference Series</source><creator>Murugan, Thangavel ; Aldahmani, Fotoon Khaleifah Abdulla Mosabbas ; Almehrzi, Ghalya Salem Mohamed Alshuraiqi ; Alsereidi, Eiman Mohamed Salem Mohamed ; Aldahmani, Aaesha Abdulla Khalfan Ali ; Alahbabi, Eiman Mubarak Masoud</creator><creatorcontrib>Murugan, Thangavel ; Aldahmani, Fotoon Khaleifah Abdulla Mosabbas ; Almehrzi, Ghalya Salem Mohamed Alshuraiqi ; Alsereidi, Eiman Mohamed Salem Mohamed ; Aldahmani, Aaesha Abdulla Khalfan Ali ; Alahbabi, Eiman Mubarak Masoud</creatorcontrib><description>Traditional crime scene evidence detection methods are time-consuming and prone to human error. In recent years, artificial intelligence (\mathbf{A I}) has revolutionized crime scene investigation by improving the detection and analysis of evidence. This review paper examines recent studies on AIbased evidence detection from key crime scenes, such as weapons, footprints, and bloodstains. Researchers have used advanced AI algorithms to develop innovative techniques for accurately identifying and documenting these crucial pieces of evidence, which helps law enforcement agencies solve criminal cases more efficiently. The paper discusses various AI models and technologies for detecting weapons, footprints, and bloodstains at crime scenes, highlighting their strengths, limitations, and potential for future advancements. Overall, the paper emphasizes the importance of AI in enhancing crime scene investigation processes and advocates for further research and development in this rapidly evolving field to maximize its potential impact on criminal justice systems worldwide.</description><identifier>EISSN: 2771-7402</identifier><identifier>EISBN: 9798350367027</identifier><identifier>DOI: 10.1109/CommNet63022.2024.10793266</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Artificial intelligence ; bloodstains ; crime scene ; evidence ; footprint ; Forensics ; Machine learning ; Machine learning algorithms ; Privacy ; Reliability ; Research and development ; Reviews ; weapon ; Weapons</subject><ispartof>International Conference on Advanced Communication Technologies and Networking (Online), 2024, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10793266$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10793266$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Murugan, Thangavel</creatorcontrib><creatorcontrib>Aldahmani, Fotoon Khaleifah Abdulla Mosabbas</creatorcontrib><creatorcontrib>Almehrzi, Ghalya Salem Mohamed Alshuraiqi</creatorcontrib><creatorcontrib>Alsereidi, Eiman Mohamed Salem Mohamed</creatorcontrib><creatorcontrib>Aldahmani, Aaesha Abdulla Khalfan Ali</creatorcontrib><creatorcontrib>Alahbabi, Eiman Mubarak Masoud</creatorcontrib><title>Recent Research Study on AI-based Crime Scene Evidence Detection</title><title>International Conference on Advanced Communication Technologies and Networking (Online)</title><addtitle>CommNet</addtitle><description>Traditional crime scene evidence detection methods are time-consuming and prone to human error. In recent years, artificial intelligence (\mathbf{A I}) has revolutionized crime scene investigation by improving the detection and analysis of evidence. This review paper examines recent studies on AIbased evidence detection from key crime scenes, such as weapons, footprints, and bloodstains. Researchers have used advanced AI algorithms to develop innovative techniques for accurately identifying and documenting these crucial pieces of evidence, which helps law enforcement agencies solve criminal cases more efficiently. The paper discusses various AI models and technologies for detecting weapons, footprints, and bloodstains at crime scenes, highlighting their strengths, limitations, and potential for future advancements. Overall, the paper emphasizes the importance of AI in enhancing crime scene investigation processes and advocates for further research and development in this rapidly evolving field to maximize its potential impact on criminal justice systems worldwide.</description><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>bloodstains</subject><subject>crime scene</subject><subject>evidence</subject><subject>footprint</subject><subject>Forensics</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Privacy</subject><subject>Reliability</subject><subject>Research and development</subject><subject>Reviews</subject><subject>weapon</subject><subject>Weapons</subject><issn>2771-7402</issn><isbn>9798350367027</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFjrEOgjAURauJiUT5A4fGHXx9RSqbBjW6OIA7QXhGjBRDqwl_L4POTnc45ySXsbkAXwiIFnFT1yeyoQREHwEDX4CKJIbhgLmRilZyCTJUgGrIHFRKeCoAHDPXmDsASIQAAnTYOqGCtOUJGcrb4sZT-yo73mi-OXqX3FDJ47aqiae9Rnz3rkrSBfEtWSps1egpG13zhyH3uxM22-_O8cGriCh79m3edtnvnPyDPwbcPUI</recordid><startdate>20241204</startdate><enddate>20241204</enddate><creator>Murugan, Thangavel</creator><creator>Aldahmani, Fotoon Khaleifah Abdulla Mosabbas</creator><creator>Almehrzi, Ghalya Salem Mohamed Alshuraiqi</creator><creator>Alsereidi, Eiman Mohamed Salem Mohamed</creator><creator>Aldahmani, Aaesha Abdulla Khalfan Ali</creator><creator>Alahbabi, Eiman Mubarak Masoud</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20241204</creationdate><title>Recent Research Study on AI-based Crime Scene Evidence Detection</title><author>Murugan, Thangavel ; Aldahmani, Fotoon Khaleifah Abdulla Mosabbas ; Almehrzi, Ghalya Salem Mohamed Alshuraiqi ; Alsereidi, Eiman Mohamed Salem Mohamed ; Aldahmani, Aaesha Abdulla Khalfan Ali ; Alahbabi, Eiman Mubarak Masoud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_107932663</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>bloodstains</topic><topic>crime scene</topic><topic>evidence</topic><topic>footprint</topic><topic>Forensics</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Privacy</topic><topic>Reliability</topic><topic>Research and development</topic><topic>Reviews</topic><topic>weapon</topic><topic>Weapons</topic><toplevel>online_resources</toplevel><creatorcontrib>Murugan, Thangavel</creatorcontrib><creatorcontrib>Aldahmani, Fotoon Khaleifah Abdulla Mosabbas</creatorcontrib><creatorcontrib>Almehrzi, Ghalya Salem Mohamed Alshuraiqi</creatorcontrib><creatorcontrib>Alsereidi, Eiman Mohamed Salem Mohamed</creatorcontrib><creatorcontrib>Aldahmani, Aaesha Abdulla Khalfan Ali</creatorcontrib><creatorcontrib>Alahbabi, Eiman Mubarak Masoud</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Murugan, Thangavel</au><au>Aldahmani, Fotoon Khaleifah Abdulla Mosabbas</au><au>Almehrzi, Ghalya Salem Mohamed Alshuraiqi</au><au>Alsereidi, Eiman Mohamed Salem Mohamed</au><au>Aldahmani, Aaesha Abdulla Khalfan Ali</au><au>Alahbabi, Eiman Mubarak Masoud</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Recent Research Study on AI-based Crime Scene Evidence Detection</atitle><btitle>International Conference on Advanced Communication Technologies and Networking (Online)</btitle><stitle>CommNet</stitle><date>2024-12-04</date><risdate>2024</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><eissn>2771-7402</eissn><eisbn>9798350367027</eisbn><abstract>Traditional crime scene evidence detection methods are time-consuming and prone to human error. In recent years, artificial intelligence (\mathbf{A I}) has revolutionized crime scene investigation by improving the detection and analysis of evidence. This review paper examines recent studies on AIbased evidence detection from key crime scenes, such as weapons, footprints, and bloodstains. Researchers have used advanced AI algorithms to develop innovative techniques for accurately identifying and documenting these crucial pieces of evidence, which helps law enforcement agencies solve criminal cases more efficiently. The paper discusses various AI models and technologies for detecting weapons, footprints, and bloodstains at crime scenes, highlighting their strengths, limitations, and potential for future advancements. Overall, the paper emphasizes the importance of AI in enhancing crime scene investigation processes and advocates for further research and development in this rapidly evolving field to maximize its potential impact on criminal justice systems worldwide.</abstract><pub>IEEE</pub><doi>10.1109/CommNet63022.2024.10793266</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2771-7402 |
ispartof | International Conference on Advanced Communication Technologies and Networking (Online), 2024, p.1-8 |
issn | 2771-7402 |
language | eng |
recordid | cdi_ieee_primary_10793266 |
source | IEEE Xplore All Conference Series |
subjects | Accuracy Artificial intelligence bloodstains crime scene evidence footprint Forensics Machine learning Machine learning algorithms Privacy Reliability Research and development Reviews weapon Weapons |
title | Recent Research Study on AI-based Crime Scene Evidence Detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A38%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Recent%20Research%20Study%20on%20AI-based%20Crime%20Scene%20Evidence%20Detection&rft.btitle=International%20Conference%20on%20Advanced%20Communication%20Technologies%20and%20Networking%20(Online)&rft.au=Murugan,%20Thangavel&rft.date=2024-12-04&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.eissn=2771-7402&rft_id=info:doi/10.1109/CommNet63022.2024.10793266&rft.eisbn=9798350367027&rft_dat=%3Cieee_CHZPO%3E10793266%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_107932663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10793266&rfr_iscdi=true |