Loading…

Generalizable Deep Learning for Pulse-echo Speed of Sound Imaging via Time-shift Maps

Accurate speed of sound (SoS) imaging is important for improving the diagnostic capability and image quality of ultrasound systems. However, achieving accurate SoS imaging in the pulse-echo mode remains challenging. While deep learning (DL) approaches have shown promise in SoS reconstruction from si...

Full description

Saved in:
Bibliographic Details
Main Authors: Chen, Haotian, Zuo, Jingyi, Zhu, Yuanbin, Kabir, Md Rizwanul, Han, Aiguo
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Chen, Haotian
Zuo, Jingyi
Zhu, Yuanbin
Kabir, Md Rizwanul
Han, Aiguo
description Accurate speed of sound (SoS) imaging is important for improving the diagnostic capability and image quality of ultrasound systems. However, achieving accurate SoS imaging in the pulse-echo mode remains challenging. While deep learning (DL) approaches have shown promise in SoS reconstruction from simulated echo data, they often suffer from significant performance degradation when transitioning from simulation to experimental data, highlighting a gap in generalizability. To address this gap, we propose a DL framework that utilizes time-shift maps as the input for SoS reconstruction. The time-shift maps are obtained from raw echo data through customized beamforming and phase-shift tracking. Compared with raw echo data, the proposed time-shift measurement is more directly linked to SoS, based on the physical principle that SoS variation causes the shifts in time of flight. Simulation studies demonstrate that our method performs reliably across varying conditions, reducing the influence of pulse settings and medium properties. Experiments with tissue-mimicking phantoms show that the simulation-trained model successfully generalizes to real-world data.
doi_str_mv 10.1109/UFFC-JS60046.2024.10793488
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10793488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10793488</ieee_id><sourcerecordid>10793488</sourcerecordid><originalsourceid>FETCH-ieee_primary_107934883</originalsourceid><addsrcrecordid>eNqFjs1qwkAURkeh0Nj6Bl1c3E96JzMmmbU2aqkgJK5lWm90JH_MNAX79LWga1ff4pwDH2MTgaEQqF-3WTbj73mMqOIwwkiFAhMtVZoO2FgnOpVTlInQKIYsiGQy5ahU-shG3p8QI8RYBWy7oIacqeyv-awI5kQdfJBxjW0OULYONn3lidPXsYW8I9pDW0Le9s0eVrU5_Fs_1kBha-L-aMtvWJvOP7OH0ly68XWf2Ev2VsyW3BLRrnO2Nu68u92Vd_Af2i1Dyw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Generalizable Deep Learning for Pulse-echo Speed of Sound Imaging via Time-shift Maps</title><source>IEEE Xplore All Conference Series</source><creator>Chen, Haotian ; Zuo, Jingyi ; Zhu, Yuanbin ; Kabir, Md Rizwanul ; Han, Aiguo</creator><creatorcontrib>Chen, Haotian ; Zuo, Jingyi ; Zhu, Yuanbin ; Kabir, Md Rizwanul ; Han, Aiguo</creatorcontrib><description>Accurate speed of sound (SoS) imaging is important for improving the diagnostic capability and image quality of ultrasound systems. However, achieving accurate SoS imaging in the pulse-echo mode remains challenging. While deep learning (DL) approaches have shown promise in SoS reconstruction from simulated echo data, they often suffer from significant performance degradation when transitioning from simulation to experimental data, highlighting a gap in generalizability. To address this gap, we propose a DL framework that utilizes time-shift maps as the input for SoS reconstruction. The time-shift maps are obtained from raw echo data through customized beamforming and phase-shift tracking. Compared with raw echo data, the proposed time-shift measurement is more directly linked to SoS, based on the physical principle that SoS variation causes the shifts in time of flight. Simulation studies demonstrate that our method performs reliably across varying conditions, reducing the influence of pulse settings and medium properties. Experiments with tissue-mimicking phantoms show that the simulation-trained model successfully generalizes to real-world data.</description><identifier>EISSN: 2375-0448</identifier><identifier>EISBN: 9798350371901</identifier><identifier>DOI: 10.1109/UFFC-JS60046.2024.10793488</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Data models ; Deep learning ; Generalizability ; Image quality ; Image reconstruction ; Imaging ; Phantoms ; Pulse echo ; Robustness ; Speed of Sound imaging ; Time measurement ; Time shift ; Ultrasonic imaging</subject><ispartof>Proceedings - IEEE International Symposium on Applications of Ferroelectrics, 2024, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10793488$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27899,54527,54904</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10793488$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Haotian</creatorcontrib><creatorcontrib>Zuo, Jingyi</creatorcontrib><creatorcontrib>Zhu, Yuanbin</creatorcontrib><creatorcontrib>Kabir, Md Rizwanul</creatorcontrib><creatorcontrib>Han, Aiguo</creatorcontrib><title>Generalizable Deep Learning for Pulse-echo Speed of Sound Imaging via Time-shift Maps</title><title>Proceedings - IEEE International Symposium on Applications of Ferroelectrics</title><addtitle>UFFC-JS</addtitle><description>Accurate speed of sound (SoS) imaging is important for improving the diagnostic capability and image quality of ultrasound systems. However, achieving accurate SoS imaging in the pulse-echo mode remains challenging. While deep learning (DL) approaches have shown promise in SoS reconstruction from simulated echo data, they often suffer from significant performance degradation when transitioning from simulation to experimental data, highlighting a gap in generalizability. To address this gap, we propose a DL framework that utilizes time-shift maps as the input for SoS reconstruction. The time-shift maps are obtained from raw echo data through customized beamforming and phase-shift tracking. Compared with raw echo data, the proposed time-shift measurement is more directly linked to SoS, based on the physical principle that SoS variation causes the shifts in time of flight. Simulation studies demonstrate that our method performs reliably across varying conditions, reducing the influence of pulse settings and medium properties. Experiments with tissue-mimicking phantoms show that the simulation-trained model successfully generalizes to real-world data.</description><subject>Accuracy</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Generalizability</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>Phantoms</subject><subject>Pulse echo</subject><subject>Robustness</subject><subject>Speed of Sound imaging</subject><subject>Time measurement</subject><subject>Time shift</subject><subject>Ultrasonic imaging</subject><issn>2375-0448</issn><isbn>9798350371901</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFjs1qwkAURkeh0Nj6Bl1c3E96JzMmmbU2aqkgJK5lWm90JH_MNAX79LWga1ff4pwDH2MTgaEQqF-3WTbj73mMqOIwwkiFAhMtVZoO2FgnOpVTlInQKIYsiGQy5ahU-shG3p8QI8RYBWy7oIacqeyv-awI5kQdfJBxjW0OULYONn3lidPXsYW8I9pDW0Le9s0eVrU5_Fs_1kBha-L-aMtvWJvOP7OH0ly68XWf2Ev2VsyW3BLRrnO2Nu68u92Vd_Af2i1Dyw</recordid><startdate>20240922</startdate><enddate>20240922</enddate><creator>Chen, Haotian</creator><creator>Zuo, Jingyi</creator><creator>Zhu, Yuanbin</creator><creator>Kabir, Md Rizwanul</creator><creator>Han, Aiguo</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20240922</creationdate><title>Generalizable Deep Learning for Pulse-echo Speed of Sound Imaging via Time-shift Maps</title><author>Chen, Haotian ; Zuo, Jingyi ; Zhu, Yuanbin ; Kabir, Md Rizwanul ; Han, Aiguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_107934883</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Generalizability</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>Phantoms</topic><topic>Pulse echo</topic><topic>Robustness</topic><topic>Speed of Sound imaging</topic><topic>Time measurement</topic><topic>Time shift</topic><topic>Ultrasonic imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Haotian</creatorcontrib><creatorcontrib>Zuo, Jingyi</creatorcontrib><creatorcontrib>Zhu, Yuanbin</creatorcontrib><creatorcontrib>Kabir, Md Rizwanul</creatorcontrib><creatorcontrib>Han, Aiguo</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Haotian</au><au>Zuo, Jingyi</au><au>Zhu, Yuanbin</au><au>Kabir, Md Rizwanul</au><au>Han, Aiguo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Generalizable Deep Learning for Pulse-echo Speed of Sound Imaging via Time-shift Maps</atitle><btitle>Proceedings - IEEE International Symposium on Applications of Ferroelectrics</btitle><stitle>UFFC-JS</stitle><date>2024-09-22</date><risdate>2024</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><eissn>2375-0448</eissn><eisbn>9798350371901</eisbn><abstract>Accurate speed of sound (SoS) imaging is important for improving the diagnostic capability and image quality of ultrasound systems. However, achieving accurate SoS imaging in the pulse-echo mode remains challenging. While deep learning (DL) approaches have shown promise in SoS reconstruction from simulated echo data, they often suffer from significant performance degradation when transitioning from simulation to experimental data, highlighting a gap in generalizability. To address this gap, we propose a DL framework that utilizes time-shift maps as the input for SoS reconstruction. The time-shift maps are obtained from raw echo data through customized beamforming and phase-shift tracking. Compared with raw echo data, the proposed time-shift measurement is more directly linked to SoS, based on the physical principle that SoS variation causes the shifts in time of flight. Simulation studies demonstrate that our method performs reliably across varying conditions, reducing the influence of pulse settings and medium properties. Experiments with tissue-mimicking phantoms show that the simulation-trained model successfully generalizes to real-world data.</abstract><pub>IEEE</pub><doi>10.1109/UFFC-JS60046.2024.10793488</doi></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2375-0448
ispartof Proceedings - IEEE International Symposium on Applications of Ferroelectrics, 2024, p.1-4
issn 2375-0448
language eng
recordid cdi_ieee_primary_10793488
source IEEE Xplore All Conference Series
subjects Accuracy
Data models
Deep learning
Generalizability
Image quality
Image reconstruction
Imaging
Phantoms
Pulse echo
Robustness
Speed of Sound imaging
Time measurement
Time shift
Ultrasonic imaging
title Generalizable Deep Learning for Pulse-echo Speed of Sound Imaging via Time-shift Maps
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-27T12%3A53%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Generalizable%20Deep%20Learning%20for%20Pulse-echo%20Speed%20of%20Sound%20Imaging%20via%20Time-shift%20Maps&rft.btitle=Proceedings%20-%20IEEE%20International%20Symposium%20on%20Applications%20of%20Ferroelectrics&rft.au=Chen,%20Haotian&rft.date=2024-09-22&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.eissn=2375-0448&rft_id=info:doi/10.1109/UFFC-JS60046.2024.10793488&rft.eisbn=9798350371901&rft_dat=%3Cieee_CHZPO%3E10793488%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_107934883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10793488&rfr_iscdi=true