Loading…
Generalizable Deep Learning for Pulse-echo Speed of Sound Imaging via Time-shift Maps
Accurate speed of sound (SoS) imaging is important for improving the diagnostic capability and image quality of ultrasound systems. However, achieving accurate SoS imaging in the pulse-echo mode remains challenging. While deep learning (DL) approaches have shown promise in SoS reconstruction from si...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Chen, Haotian Zuo, Jingyi Zhu, Yuanbin Kabir, Md Rizwanul Han, Aiguo |
description | Accurate speed of sound (SoS) imaging is important for improving the diagnostic capability and image quality of ultrasound systems. However, achieving accurate SoS imaging in the pulse-echo mode remains challenging. While deep learning (DL) approaches have shown promise in SoS reconstruction from simulated echo data, they often suffer from significant performance degradation when transitioning from simulation to experimental data, highlighting a gap in generalizability. To address this gap, we propose a DL framework that utilizes time-shift maps as the input for SoS reconstruction. The time-shift maps are obtained from raw echo data through customized beamforming and phase-shift tracking. Compared with raw echo data, the proposed time-shift measurement is more directly linked to SoS, based on the physical principle that SoS variation causes the shifts in time of flight. Simulation studies demonstrate that our method performs reliably across varying conditions, reducing the influence of pulse settings and medium properties. Experiments with tissue-mimicking phantoms show that the simulation-trained model successfully generalizes to real-world data. |
doi_str_mv | 10.1109/UFFC-JS60046.2024.10793488 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10793488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10793488</ieee_id><sourcerecordid>10793488</sourcerecordid><originalsourceid>FETCH-ieee_primary_107934883</originalsourceid><addsrcrecordid>eNqFjs1qwkAURkeh0Nj6Bl1c3E96JzMmmbU2aqkgJK5lWm90JH_MNAX79LWga1ff4pwDH2MTgaEQqF-3WTbj73mMqOIwwkiFAhMtVZoO2FgnOpVTlInQKIYsiGQy5ahU-shG3p8QI8RYBWy7oIacqeyv-awI5kQdfJBxjW0OULYONn3lidPXsYW8I9pDW0Le9s0eVrU5_Fs_1kBha-L-aMtvWJvOP7OH0ly68XWf2Ev2VsyW3BLRrnO2Nu68u92Vd_Af2i1Dyw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Generalizable Deep Learning for Pulse-echo Speed of Sound Imaging via Time-shift Maps</title><source>IEEE Xplore All Conference Series</source><creator>Chen, Haotian ; Zuo, Jingyi ; Zhu, Yuanbin ; Kabir, Md Rizwanul ; Han, Aiguo</creator><creatorcontrib>Chen, Haotian ; Zuo, Jingyi ; Zhu, Yuanbin ; Kabir, Md Rizwanul ; Han, Aiguo</creatorcontrib><description>Accurate speed of sound (SoS) imaging is important for improving the diagnostic capability and image quality of ultrasound systems. However, achieving accurate SoS imaging in the pulse-echo mode remains challenging. While deep learning (DL) approaches have shown promise in SoS reconstruction from simulated echo data, they often suffer from significant performance degradation when transitioning from simulation to experimental data, highlighting a gap in generalizability. To address this gap, we propose a DL framework that utilizes time-shift maps as the input for SoS reconstruction. The time-shift maps are obtained from raw echo data through customized beamforming and phase-shift tracking. Compared with raw echo data, the proposed time-shift measurement is more directly linked to SoS, based on the physical principle that SoS variation causes the shifts in time of flight. Simulation studies demonstrate that our method performs reliably across varying conditions, reducing the influence of pulse settings and medium properties. Experiments with tissue-mimicking phantoms show that the simulation-trained model successfully generalizes to real-world data.</description><identifier>EISSN: 2375-0448</identifier><identifier>EISBN: 9798350371901</identifier><identifier>DOI: 10.1109/UFFC-JS60046.2024.10793488</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Data models ; Deep learning ; Generalizability ; Image quality ; Image reconstruction ; Imaging ; Phantoms ; Pulse echo ; Robustness ; Speed of Sound imaging ; Time measurement ; Time shift ; Ultrasonic imaging</subject><ispartof>Proceedings - IEEE International Symposium on Applications of Ferroelectrics, 2024, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10793488$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27899,54527,54904</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10793488$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Haotian</creatorcontrib><creatorcontrib>Zuo, Jingyi</creatorcontrib><creatorcontrib>Zhu, Yuanbin</creatorcontrib><creatorcontrib>Kabir, Md Rizwanul</creatorcontrib><creatorcontrib>Han, Aiguo</creatorcontrib><title>Generalizable Deep Learning for Pulse-echo Speed of Sound Imaging via Time-shift Maps</title><title>Proceedings - IEEE International Symposium on Applications of Ferroelectrics</title><addtitle>UFFC-JS</addtitle><description>Accurate speed of sound (SoS) imaging is important for improving the diagnostic capability and image quality of ultrasound systems. However, achieving accurate SoS imaging in the pulse-echo mode remains challenging. While deep learning (DL) approaches have shown promise in SoS reconstruction from simulated echo data, they often suffer from significant performance degradation when transitioning from simulation to experimental data, highlighting a gap in generalizability. To address this gap, we propose a DL framework that utilizes time-shift maps as the input for SoS reconstruction. The time-shift maps are obtained from raw echo data through customized beamforming and phase-shift tracking. Compared with raw echo data, the proposed time-shift measurement is more directly linked to SoS, based on the physical principle that SoS variation causes the shifts in time of flight. Simulation studies demonstrate that our method performs reliably across varying conditions, reducing the influence of pulse settings and medium properties. Experiments with tissue-mimicking phantoms show that the simulation-trained model successfully generalizes to real-world data.</description><subject>Accuracy</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Generalizability</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>Phantoms</subject><subject>Pulse echo</subject><subject>Robustness</subject><subject>Speed of Sound imaging</subject><subject>Time measurement</subject><subject>Time shift</subject><subject>Ultrasonic imaging</subject><issn>2375-0448</issn><isbn>9798350371901</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFjs1qwkAURkeh0Nj6Bl1c3E96JzMmmbU2aqkgJK5lWm90JH_MNAX79LWga1ff4pwDH2MTgaEQqF-3WTbj73mMqOIwwkiFAhMtVZoO2FgnOpVTlInQKIYsiGQy5ahU-shG3p8QI8RYBWy7oIacqeyv-awI5kQdfJBxjW0OULYONn3lidPXsYW8I9pDW0Le9s0eVrU5_Fs_1kBha-L-aMtvWJvOP7OH0ly68XWf2Ev2VsyW3BLRrnO2Nu68u92Vd_Af2i1Dyw</recordid><startdate>20240922</startdate><enddate>20240922</enddate><creator>Chen, Haotian</creator><creator>Zuo, Jingyi</creator><creator>Zhu, Yuanbin</creator><creator>Kabir, Md Rizwanul</creator><creator>Han, Aiguo</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20240922</creationdate><title>Generalizable Deep Learning for Pulse-echo Speed of Sound Imaging via Time-shift Maps</title><author>Chen, Haotian ; Zuo, Jingyi ; Zhu, Yuanbin ; Kabir, Md Rizwanul ; Han, Aiguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_107934883</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Generalizability</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>Phantoms</topic><topic>Pulse echo</topic><topic>Robustness</topic><topic>Speed of Sound imaging</topic><topic>Time measurement</topic><topic>Time shift</topic><topic>Ultrasonic imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Haotian</creatorcontrib><creatorcontrib>Zuo, Jingyi</creatorcontrib><creatorcontrib>Zhu, Yuanbin</creatorcontrib><creatorcontrib>Kabir, Md Rizwanul</creatorcontrib><creatorcontrib>Han, Aiguo</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Haotian</au><au>Zuo, Jingyi</au><au>Zhu, Yuanbin</au><au>Kabir, Md Rizwanul</au><au>Han, Aiguo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Generalizable Deep Learning for Pulse-echo Speed of Sound Imaging via Time-shift Maps</atitle><btitle>Proceedings - IEEE International Symposium on Applications of Ferroelectrics</btitle><stitle>UFFC-JS</stitle><date>2024-09-22</date><risdate>2024</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><eissn>2375-0448</eissn><eisbn>9798350371901</eisbn><abstract>Accurate speed of sound (SoS) imaging is important for improving the diagnostic capability and image quality of ultrasound systems. However, achieving accurate SoS imaging in the pulse-echo mode remains challenging. While deep learning (DL) approaches have shown promise in SoS reconstruction from simulated echo data, they often suffer from significant performance degradation when transitioning from simulation to experimental data, highlighting a gap in generalizability. To address this gap, we propose a DL framework that utilizes time-shift maps as the input for SoS reconstruction. The time-shift maps are obtained from raw echo data through customized beamforming and phase-shift tracking. Compared with raw echo data, the proposed time-shift measurement is more directly linked to SoS, based on the physical principle that SoS variation causes the shifts in time of flight. Simulation studies demonstrate that our method performs reliably across varying conditions, reducing the influence of pulse settings and medium properties. Experiments with tissue-mimicking phantoms show that the simulation-trained model successfully generalizes to real-world data.</abstract><pub>IEEE</pub><doi>10.1109/UFFC-JS60046.2024.10793488</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2375-0448 |
ispartof | Proceedings - IEEE International Symposium on Applications of Ferroelectrics, 2024, p.1-4 |
issn | 2375-0448 |
language | eng |
recordid | cdi_ieee_primary_10793488 |
source | IEEE Xplore All Conference Series |
subjects | Accuracy Data models Deep learning Generalizability Image quality Image reconstruction Imaging Phantoms Pulse echo Robustness Speed of Sound imaging Time measurement Time shift Ultrasonic imaging |
title | Generalizable Deep Learning for Pulse-echo Speed of Sound Imaging via Time-shift Maps |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-27T12%3A53%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Generalizable%20Deep%20Learning%20for%20Pulse-echo%20Speed%20of%20Sound%20Imaging%20via%20Time-shift%20Maps&rft.btitle=Proceedings%20-%20IEEE%20International%20Symposium%20on%20Applications%20of%20Ferroelectrics&rft.au=Chen,%20Haotian&rft.date=2024-09-22&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.eissn=2375-0448&rft_id=info:doi/10.1109/UFFC-JS60046.2024.10793488&rft.eisbn=9798350371901&rft_dat=%3Cieee_CHZPO%3E10793488%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_107934883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10793488&rfr_iscdi=true |