Loading…

Data-Driven Insights into the Industrial Transformation Literature

This paper addresses the burgeoning challenge of navigating the expansive literature, particularly within industrial transformation and innovation. Given the multidisciplinary nature of this research area, which spans technological, economic, and organizational studies, the volume of relevant public...

Full description

Saved in:
Bibliographic Details
Main Authors: Kling, Nico, Kling, Chantal, Reuther, Kevin, Ungerer, Christina
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 9
container_issue
container_start_page 1
container_title
container_volume
creator Kling, Nico
Kling, Chantal
Reuther, Kevin
Ungerer, Christina
description This paper addresses the burgeoning challenge of navigating the expansive literature, particularly within industrial transformation and innovation. Given the multidisciplinary nature of this research area, which spans technological, economic, and organizational studies, the volume of relevant publications has grown significantly, necessitating efficient literature review methodologies. In response, the authors advocate for a no-code text mining approach that leverages word embedding, cosine distance calculations, complete linkage hierarchical clustering, and rapid automatic keyword extraction. This methodology is applied to a dataset comprising of 2.742 peer-reviewed journal articles from Scopus, focusing on their abstracts, keywords, and titles as the corpus. Through this approach, the paper systematically dissects the prevailing discourse, identifying key thematic clusters that encapsulate the current research landscape's methodological, technological, security-related, and business-oriented dimensions. The authors highlight a significant emphasis on sustainability, underscoring the integral role of digital technologies in fostering environmental stewardship alongside industrial innovation.
doi_str_mv 10.1109/ICE/ITMC61926.2024.10794375
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10794375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10794375</ieee_id><sourcerecordid>10794375</sourcerecordid><originalsourceid>FETCH-ieee_primary_107943753</originalsourceid><addsrcrecordid>eNqFjrEKwjAUAKMgWLR_4BBwbn1JmrRZbRULunWXgE-NaCpJFPx7HXR2OrhbjpA5g5wx0Iu2Xi3ablcrprnKOfAiZ1DqQpRyQFJd6kpIEIoXQg5JwpUWWVVJOSZpCBcAEBwK0Dwhy8ZEkzXePtHR1gV7OsdArYs9jWf8mMMjRG_NlXbeuHDs_c1E2zu6tRG9iQ-PUzI6mmvA9MsJma1XXb3JLCLu797ejH_tf3viT34D3Q0_Mw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Data-Driven Insights into the Industrial Transformation Literature</title><source>IEEE Xplore All Conference Series</source><creator>Kling, Nico ; Kling, Chantal ; Reuther, Kevin ; Ungerer, Christina</creator><creatorcontrib>Kling, Nico ; Kling, Chantal ; Reuther, Kevin ; Ungerer, Christina</creatorcontrib><description>This paper addresses the burgeoning challenge of navigating the expansive literature, particularly within industrial transformation and innovation. Given the multidisciplinary nature of this research area, which spans technological, economic, and organizational studies, the volume of relevant publications has grown significantly, necessitating efficient literature review methodologies. In response, the authors advocate for a no-code text mining approach that leverages word embedding, cosine distance calculations, complete linkage hierarchical clustering, and rapid automatic keyword extraction. This methodology is applied to a dataset comprising of 2.742 peer-reviewed journal articles from Scopus, focusing on their abstracts, keywords, and titles as the corpus. Through this approach, the paper systematically dissects the prevailing discourse, identifying key thematic clusters that encapsulate the current research landscape's methodological, technological, security-related, and business-oriented dimensions. The authors highlight a significant emphasis on sustainability, underscoring the integral role of digital technologies in fostering environmental stewardship alongside industrial innovation.</description><identifier>EISSN: 2693-8855</identifier><identifier>EISBN: 9798350362435</identifier><identifier>DOI: 10.1109/ICE/ITMC61926.2024.10794375</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bibliographies ; Couplings ; Economics ; Focusing ; Industrial Transformation ; Literature Review Methodology ; Navigation ; No-code ; Reviews ; Sustainable development ; Technological innovation ; Text mining</subject><ispartof>International ICE Conference on Engineering, Technology and Innovation (Online), 2024, p.1-9</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4987-9645</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10794375$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10794375$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kling, Nico</creatorcontrib><creatorcontrib>Kling, Chantal</creatorcontrib><creatorcontrib>Reuther, Kevin</creatorcontrib><creatorcontrib>Ungerer, Christina</creatorcontrib><title>Data-Driven Insights into the Industrial Transformation Literature</title><title>International ICE Conference on Engineering, Technology and Innovation (Online)</title><addtitle>ICE/ITMC</addtitle><description>This paper addresses the burgeoning challenge of navigating the expansive literature, particularly within industrial transformation and innovation. Given the multidisciplinary nature of this research area, which spans technological, economic, and organizational studies, the volume of relevant publications has grown significantly, necessitating efficient literature review methodologies. In response, the authors advocate for a no-code text mining approach that leverages word embedding, cosine distance calculations, complete linkage hierarchical clustering, and rapid automatic keyword extraction. This methodology is applied to a dataset comprising of 2.742 peer-reviewed journal articles from Scopus, focusing on their abstracts, keywords, and titles as the corpus. Through this approach, the paper systematically dissects the prevailing discourse, identifying key thematic clusters that encapsulate the current research landscape's methodological, technological, security-related, and business-oriented dimensions. The authors highlight a significant emphasis on sustainability, underscoring the integral role of digital technologies in fostering environmental stewardship alongside industrial innovation.</description><subject>Bibliographies</subject><subject>Couplings</subject><subject>Economics</subject><subject>Focusing</subject><subject>Industrial Transformation</subject><subject>Literature Review Methodology</subject><subject>Navigation</subject><subject>No-code</subject><subject>Reviews</subject><subject>Sustainable development</subject><subject>Technological innovation</subject><subject>Text mining</subject><issn>2693-8855</issn><isbn>9798350362435</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFjrEKwjAUAKMgWLR_4BBwbn1JmrRZbRULunWXgE-NaCpJFPx7HXR2OrhbjpA5g5wx0Iu2Xi3ablcrprnKOfAiZ1DqQpRyQFJd6kpIEIoXQg5JwpUWWVVJOSZpCBcAEBwK0Dwhy8ZEkzXePtHR1gV7OsdArYs9jWf8mMMjRG_NlXbeuHDs_c1E2zu6tRG9iQ-PUzI6mmvA9MsJma1XXb3JLCLu797ejH_tf3viT34D3Q0_Mw</recordid><startdate>20240624</startdate><enddate>20240624</enddate><creator>Kling, Nico</creator><creator>Kling, Chantal</creator><creator>Reuther, Kevin</creator><creator>Ungerer, Christina</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><orcidid>https://orcid.org/0000-0003-4987-9645</orcidid></search><sort><creationdate>20240624</creationdate><title>Data-Driven Insights into the Industrial Transformation Literature</title><author>Kling, Nico ; Kling, Chantal ; Reuther, Kevin ; Ungerer, Christina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_107943753</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bibliographies</topic><topic>Couplings</topic><topic>Economics</topic><topic>Focusing</topic><topic>Industrial Transformation</topic><topic>Literature Review Methodology</topic><topic>Navigation</topic><topic>No-code</topic><topic>Reviews</topic><topic>Sustainable development</topic><topic>Technological innovation</topic><topic>Text mining</topic><toplevel>online_resources</toplevel><creatorcontrib>Kling, Nico</creatorcontrib><creatorcontrib>Kling, Chantal</creatorcontrib><creatorcontrib>Reuther, Kevin</creatorcontrib><creatorcontrib>Ungerer, Christina</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kling, Nico</au><au>Kling, Chantal</au><au>Reuther, Kevin</au><au>Ungerer, Christina</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Data-Driven Insights into the Industrial Transformation Literature</atitle><btitle>International ICE Conference on Engineering, Technology and Innovation (Online)</btitle><stitle>ICE/ITMC</stitle><date>2024-06-24</date><risdate>2024</risdate><spage>1</spage><epage>9</epage><pages>1-9</pages><eissn>2693-8855</eissn><eisbn>9798350362435</eisbn><abstract>This paper addresses the burgeoning challenge of navigating the expansive literature, particularly within industrial transformation and innovation. Given the multidisciplinary nature of this research area, which spans technological, economic, and organizational studies, the volume of relevant publications has grown significantly, necessitating efficient literature review methodologies. In response, the authors advocate for a no-code text mining approach that leverages word embedding, cosine distance calculations, complete linkage hierarchical clustering, and rapid automatic keyword extraction. This methodology is applied to a dataset comprising of 2.742 peer-reviewed journal articles from Scopus, focusing on their abstracts, keywords, and titles as the corpus. Through this approach, the paper systematically dissects the prevailing discourse, identifying key thematic clusters that encapsulate the current research landscape's methodological, technological, security-related, and business-oriented dimensions. The authors highlight a significant emphasis on sustainability, underscoring the integral role of digital technologies in fostering environmental stewardship alongside industrial innovation.</abstract><pub>IEEE</pub><doi>10.1109/ICE/ITMC61926.2024.10794375</doi><orcidid>https://orcid.org/0000-0003-4987-9645</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2693-8855
ispartof International ICE Conference on Engineering, Technology and Innovation (Online), 2024, p.1-9
issn 2693-8855
language eng
recordid cdi_ieee_primary_10794375
source IEEE Xplore All Conference Series
subjects Bibliographies
Couplings
Economics
Focusing
Industrial Transformation
Literature Review Methodology
Navigation
No-code
Reviews
Sustainable development
Technological innovation
Text mining
title Data-Driven Insights into the Industrial Transformation Literature
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A32%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Data-Driven%20Insights%20into%20the%20Industrial%20Transformation%20Literature&rft.btitle=International%20ICE%20Conference%20on%20Engineering,%20Technology%20and%20Innovation%20(Online)&rft.au=Kling,%20Nico&rft.date=2024-06-24&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.eissn=2693-8855&rft_id=info:doi/10.1109/ICE/ITMC61926.2024.10794375&rft.eisbn=9798350362435&rft_dat=%3Cieee_CHZPO%3E10794375%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_107943753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10794375&rfr_iscdi=true