Loading…
Fine-Tunned Segment Anything Model (SAM) for Reservoir Extractions Compared With Popular CNNs: An Experiment for Space-Borne Synthetic-Aperture Radar Images
The freshwater resource is invaluable and indispensable for any nation like the Republic of Korea. Recently, deep learning (DL), AI models have become more popular and applied frequently for surface water studies. The Segment Anything Model (SAM) has been developing sharply and takes an adaptable ap...
Saved in:
Published in: | IEEE access 2025, Vol.13, p.1727-1750 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1596-7c4e0fa2449fefb156f52ff7242cd720c709dcdbadcab32a97535f7a8d6e06933 |
container_end_page | 1750 |
container_issue | |
container_start_page | 1727 |
container_title | IEEE access |
container_volume | 13 |
creator | Quang, Nguyen Hong Lee, Hanna Kim, Eui-Myoung Kim, Gihong |
description | The freshwater resource is invaluable and indispensable for any nation like the Republic of Korea. Recently, deep learning (DL), AI models have become more popular and applied frequently for surface water studies. The Segment Anything Model (SAM) has been developing sharply and takes an adaptable approach with the ability to perform zero-shot inference. Although, pre-trained SAM was trained with millions of images (a billion masks), applying it to remote sensing data reveals limitations of inaccurate results and unlabeled classes, particularly for the more complex and noise data from Synthetic-aperture Radar Images. Hence, we fine-tune the SAM model and other popular CNN models of YOLOv8, U-net(ResNet50), and DeepLab(ResNet50, EfficientNet) for lake semantic segmentation using multi-SAR RS datasets of Kompsat-5, ALOS-2, Sentinel-1, and a combination of the three datasets (data link) for model result comparisons. This study's accuracy assessment showed the SAM was the most precise model (accuracy overall \approx ~0.95 ) followed by the DeepLab(ResNet50), YOLOv8, U-net(ResNet50), and DeepLab(EfficientNet) model. Almost all models segmented highly accurate lake areas fitted well with ground-truth masks, nevertheless, the SAM (code link) presented the most well-performance model. The YOLO deals well with larger datasets and requires deeper trains to gain higher accuracy outputs. In addition, this research investigated the responses of each DL model to the SAR dataset proving a need for fine-tuning model results on SAR RS for better lake segmentations. |
doi_str_mv | 10.1109/ACCESS.2024.3516519 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10795130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10795130</ieee_id><doaj_id>oai_doaj_org_article_869f7e9a40a84dfc8186d74bddee636d</doaj_id><sourcerecordid>3151265126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1596-7c4e0fa2449fefb156f52ff7242cd720c709dcdbadcab32a97535f7a8d6e06933</originalsourceid><addsrcrecordid>eNpNkVFr2zAUhc3YYKXrL9geBHvZHpxJliVZe_NMugXabtQdexSKdJU4JJIr22P5L_2xVeoyKhASl3O-e-Bk2XuCF4Rg-aVummXbLgpclAvKCGdEvsrOCsJlThnlr1_832YXw7DD6VRpxMRZ9nDZecjvJu_BohY2B_Ajqv1x3HZ-g66DhT361NbXn5ELEd3CAPFv6CJa_hujNmMX_ICacOh1TP4_3bhFv0I_7XVEzc3N8DWhkrSH2D2BT4y21wbybyF6QO3Rj1sYO5PXSTNOEdCttsm8OugNDO-yN07vB7h4fs-z35fLu-ZHfvXz-6qpr3JDmOS5MCVgp4uylA7cmjDuWOGcKMrCWFFgI7C0xq61NXpNCy0Fo8wJXVkOmEtKz7PVzLVB71Sfwup4VEF36mkQ4kbpmFLuQVVcOgFSl1hXpXWmIhW3olxbC8Apt4n1cWb1MdxPMIxqF6boU3xFCSMFP92korPKxDAMEdz_rQSrU6tqblWdWlXPrSbXh9nVAcALh5CMUEwfAWYtn20</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3151265126</pqid></control><display><type>article</type><title>Fine-Tunned Segment Anything Model (SAM) for Reservoir Extractions Compared With Popular CNNs: An Experiment for Space-Borne Synthetic-Aperture Radar Images</title><source>IEEE Open Access Journals</source><creator>Quang, Nguyen Hong ; Lee, Hanna ; Kim, Eui-Myoung ; Kim, Gihong</creator><creatorcontrib>Quang, Nguyen Hong ; Lee, Hanna ; Kim, Eui-Myoung ; Kim, Gihong</creatorcontrib><description>The freshwater resource is invaluable and indispensable for any nation like the Republic of Korea. Recently, deep learning (DL), AI models have become more popular and applied frequently for surface water studies. The Segment Anything Model (SAM) has been developing sharply and takes an adaptable approach with the ability to perform zero-shot inference. Although, pre-trained SAM was trained with millions of images (a billion masks), applying it to remote sensing data reveals limitations of inaccurate results and unlabeled classes, particularly for the more complex and noise data from Synthetic-aperture Radar Images. Hence, we fine-tune the SAM model and other popular CNN models of YOLOv8, U-net(ResNet50), and DeepLab(ResNet50, EfficientNet) for lake semantic segmentation using multi-SAR RS datasets of Kompsat-5, ALOS-2, Sentinel-1, and a combination of the three datasets (data link) for model result comparisons. This study's accuracy assessment showed the SAM was the most precise model (accuracy overall <inline-formula> <tex-math notation="LaTeX">\approx ~0.95 </tex-math></inline-formula>) followed by the DeepLab(ResNet50), YOLOv8, U-net(ResNet50), and DeepLab(EfficientNet) model. Almost all models segmented highly accurate lake areas fitted well with ground-truth masks, nevertheless, the SAM (code link) presented the most well-performance model. The YOLO deals well with larger datasets and requires deeper trains to gain higher accuracy outputs. In addition, this research investigated the responses of each DL model to the SAR dataset proving a need for fine-tuning model results on SAR RS for better lake segmentations.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3516519</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Artificial neural networks ; Data mining ; Data models ; Datasets ; Feature extraction ; Fine-tunning ; Ground truth ; Image segmentation ; Lakes ; Machine learning ; Masks ; Radar data ; Radar imaging ; Radar polarimetry ; Remote sensing ; Republic of Korea ; reservoir ; Reservoirs ; Residual neural networks ; SAM ; Segments ; Semantic segmentation ; space-borne SAR ; Surface water ; Synthetic aperture radar</subject><ispartof>IEEE access, 2025, Vol.13, p.1727-1750</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1596-7c4e0fa2449fefb156f52ff7242cd720c709dcdbadcab32a97535f7a8d6e06933</cites><orcidid>0000-0003-3280-5340 ; 0000-0002-2835-0526 ; 0000-0001-7862-8306 ; 0000-0001-7657-624X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10795130$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4021,27631,27921,27922,27923,54931</link.rule.ids></links><search><creatorcontrib>Quang, Nguyen Hong</creatorcontrib><creatorcontrib>Lee, Hanna</creatorcontrib><creatorcontrib>Kim, Eui-Myoung</creatorcontrib><creatorcontrib>Kim, Gihong</creatorcontrib><title>Fine-Tunned Segment Anything Model (SAM) for Reservoir Extractions Compared With Popular CNNs: An Experiment for Space-Borne Synthetic-Aperture Radar Images</title><title>IEEE access</title><addtitle>Access</addtitle><description>The freshwater resource is invaluable and indispensable for any nation like the Republic of Korea. Recently, deep learning (DL), AI models have become more popular and applied frequently for surface water studies. The Segment Anything Model (SAM) has been developing sharply and takes an adaptable approach with the ability to perform zero-shot inference. Although, pre-trained SAM was trained with millions of images (a billion masks), applying it to remote sensing data reveals limitations of inaccurate results and unlabeled classes, particularly for the more complex and noise data from Synthetic-aperture Radar Images. Hence, we fine-tune the SAM model and other popular CNN models of YOLOv8, U-net(ResNet50), and DeepLab(ResNet50, EfficientNet) for lake semantic segmentation using multi-SAR RS datasets of Kompsat-5, ALOS-2, Sentinel-1, and a combination of the three datasets (data link) for model result comparisons. This study's accuracy assessment showed the SAM was the most precise model (accuracy overall <inline-formula> <tex-math notation="LaTeX">\approx ~0.95 </tex-math></inline-formula>) followed by the DeepLab(ResNet50), YOLOv8, U-net(ResNet50), and DeepLab(EfficientNet) model. Almost all models segmented highly accurate lake areas fitted well with ground-truth masks, nevertheless, the SAM (code link) presented the most well-performance model. The YOLO deals well with larger datasets and requires deeper trains to gain higher accuracy outputs. In addition, this research investigated the responses of each DL model to the SAR dataset proving a need for fine-tuning model results on SAR RS for better lake segmentations.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Data mining</subject><subject>Data models</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>Fine-tunning</subject><subject>Ground truth</subject><subject>Image segmentation</subject><subject>Lakes</subject><subject>Machine learning</subject><subject>Masks</subject><subject>Radar data</subject><subject>Radar imaging</subject><subject>Radar polarimetry</subject><subject>Remote sensing</subject><subject>Republic of Korea</subject><subject>reservoir</subject><subject>Reservoirs</subject><subject>Residual neural networks</subject><subject>SAM</subject><subject>Segments</subject><subject>Semantic segmentation</subject><subject>space-borne SAR</subject><subject>Surface water</subject><subject>Synthetic aperture radar</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVFr2zAUhc3YYKXrL9geBHvZHpxJliVZe_NMugXabtQdexSKdJU4JJIr22P5L_2xVeoyKhASl3O-e-Bk2XuCF4Rg-aVummXbLgpclAvKCGdEvsrOCsJlThnlr1_832YXw7DD6VRpxMRZ9nDZecjvJu_BohY2B_Ajqv1x3HZ-g66DhT361NbXn5ELEd3CAPFv6CJa_hujNmMX_ICacOh1TP4_3bhFv0I_7XVEzc3N8DWhkrSH2D2BT4y21wbybyF6QO3Rj1sYO5PXSTNOEdCttsm8OugNDO-yN07vB7h4fs-z35fLu-ZHfvXz-6qpr3JDmOS5MCVgp4uylA7cmjDuWOGcKMrCWFFgI7C0xq61NXpNCy0Fo8wJXVkOmEtKz7PVzLVB71Sfwup4VEF36mkQ4kbpmFLuQVVcOgFSl1hXpXWmIhW3olxbC8Apt4n1cWb1MdxPMIxqF6boU3xFCSMFP92korPKxDAMEdz_rQSrU6tqblWdWlXPrSbXh9nVAcALh5CMUEwfAWYtn20</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Quang, Nguyen Hong</creator><creator>Lee, Hanna</creator><creator>Kim, Eui-Myoung</creator><creator>Kim, Gihong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3280-5340</orcidid><orcidid>https://orcid.org/0000-0002-2835-0526</orcidid><orcidid>https://orcid.org/0000-0001-7862-8306</orcidid><orcidid>https://orcid.org/0000-0001-7657-624X</orcidid></search><sort><creationdate>2025</creationdate><title>Fine-Tunned Segment Anything Model (SAM) for Reservoir Extractions Compared With Popular CNNs: An Experiment for Space-Borne Synthetic-Aperture Radar Images</title><author>Quang, Nguyen Hong ; Lee, Hanna ; Kim, Eui-Myoung ; Kim, Gihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1596-7c4e0fa2449fefb156f52ff7242cd720c709dcdbadcab32a97535f7a8d6e06933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Data mining</topic><topic>Data models</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>Fine-tunning</topic><topic>Ground truth</topic><topic>Image segmentation</topic><topic>Lakes</topic><topic>Machine learning</topic><topic>Masks</topic><topic>Radar data</topic><topic>Radar imaging</topic><topic>Radar polarimetry</topic><topic>Remote sensing</topic><topic>Republic of Korea</topic><topic>reservoir</topic><topic>Reservoirs</topic><topic>Residual neural networks</topic><topic>SAM</topic><topic>Segments</topic><topic>Semantic segmentation</topic><topic>space-borne SAR</topic><topic>Surface water</topic><topic>Synthetic aperture radar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quang, Nguyen Hong</creatorcontrib><creatorcontrib>Lee, Hanna</creatorcontrib><creatorcontrib>Kim, Eui-Myoung</creatorcontrib><creatorcontrib>Kim, Gihong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quang, Nguyen Hong</au><au>Lee, Hanna</au><au>Kim, Eui-Myoung</au><au>Kim, Gihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fine-Tunned Segment Anything Model (SAM) for Reservoir Extractions Compared With Popular CNNs: An Experiment for Space-Borne Synthetic-Aperture Radar Images</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2025</date><risdate>2025</risdate><volume>13</volume><spage>1727</spage><epage>1750</epage><pages>1727-1750</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The freshwater resource is invaluable and indispensable for any nation like the Republic of Korea. Recently, deep learning (DL), AI models have become more popular and applied frequently for surface water studies. The Segment Anything Model (SAM) has been developing sharply and takes an adaptable approach with the ability to perform zero-shot inference. Although, pre-trained SAM was trained with millions of images (a billion masks), applying it to remote sensing data reveals limitations of inaccurate results and unlabeled classes, particularly for the more complex and noise data from Synthetic-aperture Radar Images. Hence, we fine-tune the SAM model and other popular CNN models of YOLOv8, U-net(ResNet50), and DeepLab(ResNet50, EfficientNet) for lake semantic segmentation using multi-SAR RS datasets of Kompsat-5, ALOS-2, Sentinel-1, and a combination of the three datasets (data link) for model result comparisons. This study's accuracy assessment showed the SAM was the most precise model (accuracy overall <inline-formula> <tex-math notation="LaTeX">\approx ~0.95 </tex-math></inline-formula>) followed by the DeepLab(ResNet50), YOLOv8, U-net(ResNet50), and DeepLab(EfficientNet) model. Almost all models segmented highly accurate lake areas fitted well with ground-truth masks, nevertheless, the SAM (code link) presented the most well-performance model. The YOLO deals well with larger datasets and requires deeper trains to gain higher accuracy outputs. In addition, this research investigated the responses of each DL model to the SAR dataset proving a need for fine-tuning model results on SAR RS for better lake segmentations.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3516519</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-3280-5340</orcidid><orcidid>https://orcid.org/0000-0002-2835-0526</orcidid><orcidid>https://orcid.org/0000-0001-7862-8306</orcidid><orcidid>https://orcid.org/0000-0001-7657-624X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2025, Vol.13, p.1727-1750 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10795130 |
source | IEEE Open Access Journals |
subjects | Accuracy Artificial neural networks Data mining Data models Datasets Feature extraction Fine-tunning Ground truth Image segmentation Lakes Machine learning Masks Radar data Radar imaging Radar polarimetry Remote sensing Republic of Korea reservoir Reservoirs Residual neural networks SAM Segments Semantic segmentation space-borne SAR Surface water Synthetic aperture radar |
title | Fine-Tunned Segment Anything Model (SAM) for Reservoir Extractions Compared With Popular CNNs: An Experiment for Space-Borne Synthetic-Aperture Radar Images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A35%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fine-Tunned%20Segment%20Anything%20Model%20(SAM)%20for%20Reservoir%20Extractions%20Compared%20With%20Popular%20CNNs:%20An%20Experiment%20for%20Space-Borne%20Synthetic-Aperture%20Radar%20Images&rft.jtitle=IEEE%20access&rft.au=Quang,%20Nguyen%20Hong&rft.date=2025&rft.volume=13&rft.spage=1727&rft.epage=1750&rft.pages=1727-1750&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3516519&rft_dat=%3Cproquest_ieee_%3E3151265126%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1596-7c4e0fa2449fefb156f52ff7242cd720c709dcdbadcab32a97535f7a8d6e06933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3151265126&rft_id=info:pmid/&rft_ieee_id=10795130&rfr_iscdi=true |