Loading…

Fine-Tunned Segment Anything Model (SAM) for Reservoir Extractions Compared With Popular CNNs: An Experiment for Space-Borne Synthetic-Aperture Radar Images

The freshwater resource is invaluable and indispensable for any nation like the Republic of Korea. Recently, deep learning (DL), AI models have become more popular and applied frequently for surface water studies. The Segment Anything Model (SAM) has been developing sharply and takes an adaptable ap...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2025, Vol.13, p.1727-1750
Main Authors: Quang, Nguyen Hong, Lee, Hanna, Kim, Eui-Myoung, Kim, Gihong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1596-7c4e0fa2449fefb156f52ff7242cd720c709dcdbadcab32a97535f7a8d6e06933
container_end_page 1750
container_issue
container_start_page 1727
container_title IEEE access
container_volume 13
creator Quang, Nguyen Hong
Lee, Hanna
Kim, Eui-Myoung
Kim, Gihong
description The freshwater resource is invaluable and indispensable for any nation like the Republic of Korea. Recently, deep learning (DL), AI models have become more popular and applied frequently for surface water studies. The Segment Anything Model (SAM) has been developing sharply and takes an adaptable approach with the ability to perform zero-shot inference. Although, pre-trained SAM was trained with millions of images (a billion masks), applying it to remote sensing data reveals limitations of inaccurate results and unlabeled classes, particularly for the more complex and noise data from Synthetic-aperture Radar Images. Hence, we fine-tune the SAM model and other popular CNN models of YOLOv8, U-net(ResNet50), and DeepLab(ResNet50, EfficientNet) for lake semantic segmentation using multi-SAR RS datasets of Kompsat-5, ALOS-2, Sentinel-1, and a combination of the three datasets (data link) for model result comparisons. This study's accuracy assessment showed the SAM was the most precise model (accuracy overall \approx ~0.95 ) followed by the DeepLab(ResNet50), YOLOv8, U-net(ResNet50), and DeepLab(EfficientNet) model. Almost all models segmented highly accurate lake areas fitted well with ground-truth masks, nevertheless, the SAM (code link) presented the most well-performance model. The YOLO deals well with larger datasets and requires deeper trains to gain higher accuracy outputs. In addition, this research investigated the responses of each DL model to the SAR dataset proving a need for fine-tuning model results on SAR RS for better lake segmentations.
doi_str_mv 10.1109/ACCESS.2024.3516519
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10795130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10795130</ieee_id><doaj_id>oai_doaj_org_article_869f7e9a40a84dfc8186d74bddee636d</doaj_id><sourcerecordid>3151265126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1596-7c4e0fa2449fefb156f52ff7242cd720c709dcdbadcab32a97535f7a8d6e06933</originalsourceid><addsrcrecordid>eNpNkVFr2zAUhc3YYKXrL9geBHvZHpxJliVZe_NMugXabtQdexSKdJU4JJIr22P5L_2xVeoyKhASl3O-e-Bk2XuCF4Rg-aVummXbLgpclAvKCGdEvsrOCsJlThnlr1_832YXw7DD6VRpxMRZ9nDZecjvJu_BohY2B_Ajqv1x3HZ-g66DhT361NbXn5ELEd3CAPFv6CJa_hujNmMX_ICacOh1TP4_3bhFv0I_7XVEzc3N8DWhkrSH2D2BT4y21wbybyF6QO3Rj1sYO5PXSTNOEdCttsm8OugNDO-yN07vB7h4fs-z35fLu-ZHfvXz-6qpr3JDmOS5MCVgp4uylA7cmjDuWOGcKMrCWFFgI7C0xq61NXpNCy0Fo8wJXVkOmEtKz7PVzLVB71Sfwup4VEF36mkQ4kbpmFLuQVVcOgFSl1hXpXWmIhW3olxbC8Apt4n1cWb1MdxPMIxqF6boU3xFCSMFP92korPKxDAMEdz_rQSrU6tqblWdWlXPrSbXh9nVAcALh5CMUEwfAWYtn20</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3151265126</pqid></control><display><type>article</type><title>Fine-Tunned Segment Anything Model (SAM) for Reservoir Extractions Compared With Popular CNNs: An Experiment for Space-Borne Synthetic-Aperture Radar Images</title><source>IEEE Open Access Journals</source><creator>Quang, Nguyen Hong ; Lee, Hanna ; Kim, Eui-Myoung ; Kim, Gihong</creator><creatorcontrib>Quang, Nguyen Hong ; Lee, Hanna ; Kim, Eui-Myoung ; Kim, Gihong</creatorcontrib><description>The freshwater resource is invaluable and indispensable for any nation like the Republic of Korea. Recently, deep learning (DL), AI models have become more popular and applied frequently for surface water studies. The Segment Anything Model (SAM) has been developing sharply and takes an adaptable approach with the ability to perform zero-shot inference. Although, pre-trained SAM was trained with millions of images (a billion masks), applying it to remote sensing data reveals limitations of inaccurate results and unlabeled classes, particularly for the more complex and noise data from Synthetic-aperture Radar Images. Hence, we fine-tune the SAM model and other popular CNN models of YOLOv8, U-net(ResNet50), and DeepLab(ResNet50, EfficientNet) for lake semantic segmentation using multi-SAR RS datasets of Kompsat-5, ALOS-2, Sentinel-1, and a combination of the three datasets (data link) for model result comparisons. This study's accuracy assessment showed the SAM was the most precise model (accuracy overall &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\approx ~0.95 &lt;/tex-math&gt;&lt;/inline-formula&gt;) followed by the DeepLab(ResNet50), YOLOv8, U-net(ResNet50), and DeepLab(EfficientNet) model. Almost all models segmented highly accurate lake areas fitted well with ground-truth masks, nevertheless, the SAM (code link) presented the most well-performance model. The YOLO deals well with larger datasets and requires deeper trains to gain higher accuracy outputs. In addition, this research investigated the responses of each DL model to the SAR dataset proving a need for fine-tuning model results on SAR RS for better lake segmentations.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3516519</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Artificial neural networks ; Data mining ; Data models ; Datasets ; Feature extraction ; Fine-tunning ; Ground truth ; Image segmentation ; Lakes ; Machine learning ; Masks ; Radar data ; Radar imaging ; Radar polarimetry ; Remote sensing ; Republic of Korea ; reservoir ; Reservoirs ; Residual neural networks ; SAM ; Segments ; Semantic segmentation ; space-borne SAR ; Surface water ; Synthetic aperture radar</subject><ispartof>IEEE access, 2025, Vol.13, p.1727-1750</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1596-7c4e0fa2449fefb156f52ff7242cd720c709dcdbadcab32a97535f7a8d6e06933</cites><orcidid>0000-0003-3280-5340 ; 0000-0002-2835-0526 ; 0000-0001-7862-8306 ; 0000-0001-7657-624X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10795130$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4021,27631,27921,27922,27923,54931</link.rule.ids></links><search><creatorcontrib>Quang, Nguyen Hong</creatorcontrib><creatorcontrib>Lee, Hanna</creatorcontrib><creatorcontrib>Kim, Eui-Myoung</creatorcontrib><creatorcontrib>Kim, Gihong</creatorcontrib><title>Fine-Tunned Segment Anything Model (SAM) for Reservoir Extractions Compared With Popular CNNs: An Experiment for Space-Borne Synthetic-Aperture Radar Images</title><title>IEEE access</title><addtitle>Access</addtitle><description>The freshwater resource is invaluable and indispensable for any nation like the Republic of Korea. Recently, deep learning (DL), AI models have become more popular and applied frequently for surface water studies. The Segment Anything Model (SAM) has been developing sharply and takes an adaptable approach with the ability to perform zero-shot inference. Although, pre-trained SAM was trained with millions of images (a billion masks), applying it to remote sensing data reveals limitations of inaccurate results and unlabeled classes, particularly for the more complex and noise data from Synthetic-aperture Radar Images. Hence, we fine-tune the SAM model and other popular CNN models of YOLOv8, U-net(ResNet50), and DeepLab(ResNet50, EfficientNet) for lake semantic segmentation using multi-SAR RS datasets of Kompsat-5, ALOS-2, Sentinel-1, and a combination of the three datasets (data link) for model result comparisons. This study's accuracy assessment showed the SAM was the most precise model (accuracy overall &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\approx ~0.95 &lt;/tex-math&gt;&lt;/inline-formula&gt;) followed by the DeepLab(ResNet50), YOLOv8, U-net(ResNet50), and DeepLab(EfficientNet) model. Almost all models segmented highly accurate lake areas fitted well with ground-truth masks, nevertheless, the SAM (code link) presented the most well-performance model. The YOLO deals well with larger datasets and requires deeper trains to gain higher accuracy outputs. In addition, this research investigated the responses of each DL model to the SAR dataset proving a need for fine-tuning model results on SAR RS for better lake segmentations.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Data mining</subject><subject>Data models</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>Fine-tunning</subject><subject>Ground truth</subject><subject>Image segmentation</subject><subject>Lakes</subject><subject>Machine learning</subject><subject>Masks</subject><subject>Radar data</subject><subject>Radar imaging</subject><subject>Radar polarimetry</subject><subject>Remote sensing</subject><subject>Republic of Korea</subject><subject>reservoir</subject><subject>Reservoirs</subject><subject>Residual neural networks</subject><subject>SAM</subject><subject>Segments</subject><subject>Semantic segmentation</subject><subject>space-borne SAR</subject><subject>Surface water</subject><subject>Synthetic aperture radar</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVFr2zAUhc3YYKXrL9geBHvZHpxJliVZe_NMugXabtQdexSKdJU4JJIr22P5L_2xVeoyKhASl3O-e-Bk2XuCF4Rg-aVummXbLgpclAvKCGdEvsrOCsJlThnlr1_832YXw7DD6VRpxMRZ9nDZecjvJu_BohY2B_Ajqv1x3HZ-g66DhT361NbXn5ELEd3CAPFv6CJa_hujNmMX_ICacOh1TP4_3bhFv0I_7XVEzc3N8DWhkrSH2D2BT4y21wbybyF6QO3Rj1sYO5PXSTNOEdCttsm8OugNDO-yN07vB7h4fs-z35fLu-ZHfvXz-6qpr3JDmOS5MCVgp4uylA7cmjDuWOGcKMrCWFFgI7C0xq61NXpNCy0Fo8wJXVkOmEtKz7PVzLVB71Sfwup4VEF36mkQ4kbpmFLuQVVcOgFSl1hXpXWmIhW3olxbC8Apt4n1cWb1MdxPMIxqF6boU3xFCSMFP92korPKxDAMEdz_rQSrU6tqblWdWlXPrSbXh9nVAcALh5CMUEwfAWYtn20</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Quang, Nguyen Hong</creator><creator>Lee, Hanna</creator><creator>Kim, Eui-Myoung</creator><creator>Kim, Gihong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3280-5340</orcidid><orcidid>https://orcid.org/0000-0002-2835-0526</orcidid><orcidid>https://orcid.org/0000-0001-7862-8306</orcidid><orcidid>https://orcid.org/0000-0001-7657-624X</orcidid></search><sort><creationdate>2025</creationdate><title>Fine-Tunned Segment Anything Model (SAM) for Reservoir Extractions Compared With Popular CNNs: An Experiment for Space-Borne Synthetic-Aperture Radar Images</title><author>Quang, Nguyen Hong ; Lee, Hanna ; Kim, Eui-Myoung ; Kim, Gihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1596-7c4e0fa2449fefb156f52ff7242cd720c709dcdbadcab32a97535f7a8d6e06933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Data mining</topic><topic>Data models</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>Fine-tunning</topic><topic>Ground truth</topic><topic>Image segmentation</topic><topic>Lakes</topic><topic>Machine learning</topic><topic>Masks</topic><topic>Radar data</topic><topic>Radar imaging</topic><topic>Radar polarimetry</topic><topic>Remote sensing</topic><topic>Republic of Korea</topic><topic>reservoir</topic><topic>Reservoirs</topic><topic>Residual neural networks</topic><topic>SAM</topic><topic>Segments</topic><topic>Semantic segmentation</topic><topic>space-borne SAR</topic><topic>Surface water</topic><topic>Synthetic aperture radar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quang, Nguyen Hong</creatorcontrib><creatorcontrib>Lee, Hanna</creatorcontrib><creatorcontrib>Kim, Eui-Myoung</creatorcontrib><creatorcontrib>Kim, Gihong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quang, Nguyen Hong</au><au>Lee, Hanna</au><au>Kim, Eui-Myoung</au><au>Kim, Gihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fine-Tunned Segment Anything Model (SAM) for Reservoir Extractions Compared With Popular CNNs: An Experiment for Space-Borne Synthetic-Aperture Radar Images</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2025</date><risdate>2025</risdate><volume>13</volume><spage>1727</spage><epage>1750</epage><pages>1727-1750</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The freshwater resource is invaluable and indispensable for any nation like the Republic of Korea. Recently, deep learning (DL), AI models have become more popular and applied frequently for surface water studies. The Segment Anything Model (SAM) has been developing sharply and takes an adaptable approach with the ability to perform zero-shot inference. Although, pre-trained SAM was trained with millions of images (a billion masks), applying it to remote sensing data reveals limitations of inaccurate results and unlabeled classes, particularly for the more complex and noise data from Synthetic-aperture Radar Images. Hence, we fine-tune the SAM model and other popular CNN models of YOLOv8, U-net(ResNet50), and DeepLab(ResNet50, EfficientNet) for lake semantic segmentation using multi-SAR RS datasets of Kompsat-5, ALOS-2, Sentinel-1, and a combination of the three datasets (data link) for model result comparisons. This study's accuracy assessment showed the SAM was the most precise model (accuracy overall &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\approx ~0.95 &lt;/tex-math&gt;&lt;/inline-formula&gt;) followed by the DeepLab(ResNet50), YOLOv8, U-net(ResNet50), and DeepLab(EfficientNet) model. Almost all models segmented highly accurate lake areas fitted well with ground-truth masks, nevertheless, the SAM (code link) presented the most well-performance model. The YOLO deals well with larger datasets and requires deeper trains to gain higher accuracy outputs. In addition, this research investigated the responses of each DL model to the SAR dataset proving a need for fine-tuning model results on SAR RS for better lake segmentations.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3516519</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-3280-5340</orcidid><orcidid>https://orcid.org/0000-0002-2835-0526</orcidid><orcidid>https://orcid.org/0000-0001-7862-8306</orcidid><orcidid>https://orcid.org/0000-0001-7657-624X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2025, Vol.13, p.1727-1750
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10795130
source IEEE Open Access Journals
subjects Accuracy
Artificial neural networks
Data mining
Data models
Datasets
Feature extraction
Fine-tunning
Ground truth
Image segmentation
Lakes
Machine learning
Masks
Radar data
Radar imaging
Radar polarimetry
Remote sensing
Republic of Korea
reservoir
Reservoirs
Residual neural networks
SAM
Segments
Semantic segmentation
space-borne SAR
Surface water
Synthetic aperture radar
title Fine-Tunned Segment Anything Model (SAM) for Reservoir Extractions Compared With Popular CNNs: An Experiment for Space-Borne Synthetic-Aperture Radar Images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A35%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fine-Tunned%20Segment%20Anything%20Model%20(SAM)%20for%20Reservoir%20Extractions%20Compared%20With%20Popular%20CNNs:%20An%20Experiment%20for%20Space-Borne%20Synthetic-Aperture%20Radar%20Images&rft.jtitle=IEEE%20access&rft.au=Quang,%20Nguyen%20Hong&rft.date=2025&rft.volume=13&rft.spage=1727&rft.epage=1750&rft.pages=1727-1750&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3516519&rft_dat=%3Cproquest_ieee_%3E3151265126%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1596-7c4e0fa2449fefb156f52ff7242cd720c709dcdbadcab32a97535f7a8d6e06933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3151265126&rft_id=info:pmid/&rft_ieee_id=10795130&rfr_iscdi=true