Loading…
Neural ODE-based Imitation Learning (NODE-IL): Data-Efficient Imitation Learning for Long-Horizon Multi-Skill Robot Manipulation
In robotics, acquiring new skills through Imitation Learning (IL) is crucial for handling diverse complex tasks. However, model-free IL faces challenges of data inefficiency and prolonged training time, whereas model-based methods struggle to obtain accurate nonlinear models. To address these challe...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 8530 |
container_issue | |
container_start_page | 8524 |
container_title | |
container_volume | |
creator | Zhao, Shiyao Xu, Yucheng Kasaei, Mohammadreza Khadem, Mohsen Li, Zhibin |
description | In robotics, acquiring new skills through Imitation Learning (IL) is crucial for handling diverse complex tasks. However, model-free IL faces challenges of data inefficiency and prolonged training time, whereas model-based methods struggle to obtain accurate nonlinear models. To address these challenges, we developed Neural ODE-based Imitation Learning (NODE-IL), a novel model-based imitation learning framework that employs Neural Ordinary Differential Equations (Neural ODEs) for learning task dynamics and control policies. NODE-IL comprises (1) Dynamic-NODE for learning the continuous differentiable task's transition dynamics model, and (2) Control-NODE for learning a long-horizon control policy in an MPC fashion, which are trained holistically. Extensively evaluated on challenging manipulation tasks, NODE-IL demonstrates significant advantages in data efficiency, requiring less than 70 samples to achieve robust performance. It outperforms Behavioral Cloning from Observation (BCO) and Gaussian Process Imitation Learning (GP-IL) methods, achieving 70% higher average success rate, and reducing translation errors for high-precision tasks, which demonstrates its robustness and accuracy, as an effective and efficient imitation learning approach for learning complex manipulation tasks. |
doi_str_mv | 10.1109/IROS58592.2024.10802736 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10802736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10802736</ieee_id><sourcerecordid>10802736</sourcerecordid><originalsourceid>FETCH-ieee_primary_108027363</originalsourceid><addsrcrecordid>eNqFj7FOwzAURQ0SEhXNHyDhEQanzzaOE1Ya1EhpK7XslQtO9cC1K8cZYOLTKQg2JKY7nHOGS8gVh5xzqCbNarlWpapELkDc5hxKEFoWJySrdFVKBVJrDeqUjARXkkFZFOck6_sXAOBwVKpiRD4WdojG0eW0ZlvT22fa7DGZhMHT1pro0e_o9eILN-3NHZ2aZFjddfiE1qe_5C5E2ga_Y7MQ8f1I5oNLyNav6BxdhW1IdG48Hgb3HY7JWWdcb7OfvSCXD_Xj_YyhtXZziLg38W3ze07-gz8B9qpSsQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Neural ODE-based Imitation Learning (NODE-IL): Data-Efficient Imitation Learning for Long-Horizon Multi-Skill Robot Manipulation</title><source>IEEE Xplore All Conference Series</source><creator>Zhao, Shiyao ; Xu, Yucheng ; Kasaei, Mohammadreza ; Khadem, Mohsen ; Li, Zhibin</creator><creatorcontrib>Zhao, Shiyao ; Xu, Yucheng ; Kasaei, Mohammadreza ; Khadem, Mohsen ; Li, Zhibin</creatorcontrib><description>In robotics, acquiring new skills through Imitation Learning (IL) is crucial for handling diverse complex tasks. However, model-free IL faces challenges of data inefficiency and prolonged training time, whereas model-based methods struggle to obtain accurate nonlinear models. To address these challenges, we developed Neural ODE-based Imitation Learning (NODE-IL), a novel model-based imitation learning framework that employs Neural Ordinary Differential Equations (Neural ODEs) for learning task dynamics and control policies. NODE-IL comprises (1) Dynamic-NODE for learning the continuous differentiable task's transition dynamics model, and (2) Control-NODE for learning a long-horizon control policy in an MPC fashion, which are trained holistically. Extensively evaluated on challenging manipulation tasks, NODE-IL demonstrates significant advantages in data efficiency, requiring less than 70 samples to achieve robust performance. It outperforms Behavioral Cloning from Observation (BCO) and Gaussian Process Imitation Learning (GP-IL) methods, achieving 70% higher average success rate, and reducing translation errors for high-precision tasks, which demonstrates its robustness and accuracy, as an effective and efficient imitation learning approach for learning complex manipulation tasks.</description><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9798350377705</identifier><identifier>DOI: 10.1109/IROS58592.2024.10802736</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Data models ; Imitation learning ; Manipulator dynamics ; Mathematical models ; Robust control ; Robustness ; Scalability ; Training ; Translation</subject><ispartof>Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems, 2024, p.8524-8530</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10802736$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10802736$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Shiyao</creatorcontrib><creatorcontrib>Xu, Yucheng</creatorcontrib><creatorcontrib>Kasaei, Mohammadreza</creatorcontrib><creatorcontrib>Khadem, Mohsen</creatorcontrib><creatorcontrib>Li, Zhibin</creatorcontrib><title>Neural ODE-based Imitation Learning (NODE-IL): Data-Efficient Imitation Learning for Long-Horizon Multi-Skill Robot Manipulation</title><title>Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>In robotics, acquiring new skills through Imitation Learning (IL) is crucial for handling diverse complex tasks. However, model-free IL faces challenges of data inefficiency and prolonged training time, whereas model-based methods struggle to obtain accurate nonlinear models. To address these challenges, we developed Neural ODE-based Imitation Learning (NODE-IL), a novel model-based imitation learning framework that employs Neural Ordinary Differential Equations (Neural ODEs) for learning task dynamics and control policies. NODE-IL comprises (1) Dynamic-NODE for learning the continuous differentiable task's transition dynamics model, and (2) Control-NODE for learning a long-horizon control policy in an MPC fashion, which are trained holistically. Extensively evaluated on challenging manipulation tasks, NODE-IL demonstrates significant advantages in data efficiency, requiring less than 70 samples to achieve robust performance. It outperforms Behavioral Cloning from Observation (BCO) and Gaussian Process Imitation Learning (GP-IL) methods, achieving 70% higher average success rate, and reducing translation errors for high-precision tasks, which demonstrates its robustness and accuracy, as an effective and efficient imitation learning approach for learning complex manipulation tasks.</description><subject>Accuracy</subject><subject>Data models</subject><subject>Imitation learning</subject><subject>Manipulator dynamics</subject><subject>Mathematical models</subject><subject>Robust control</subject><subject>Robustness</subject><subject>Scalability</subject><subject>Training</subject><subject>Translation</subject><issn>2153-0866</issn><isbn>9798350377705</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFj7FOwzAURQ0SEhXNHyDhEQanzzaOE1Ya1EhpK7XslQtO9cC1K8cZYOLTKQg2JKY7nHOGS8gVh5xzqCbNarlWpapELkDc5hxKEFoWJySrdFVKBVJrDeqUjARXkkFZFOck6_sXAOBwVKpiRD4WdojG0eW0ZlvT22fa7DGZhMHT1pro0e_o9eILN-3NHZ2aZFjddfiE1qe_5C5E2ga_Y7MQ8f1I5oNLyNav6BxdhW1IdG48Hgb3HY7JWWdcb7OfvSCXD_Xj_YyhtXZziLg38W3ze07-gz8B9qpSsQ</recordid><startdate>20241014</startdate><enddate>20241014</enddate><creator>Zhao, Shiyao</creator><creator>Xu, Yucheng</creator><creator>Kasaei, Mohammadreza</creator><creator>Khadem, Mohsen</creator><creator>Li, Zhibin</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20241014</creationdate><title>Neural ODE-based Imitation Learning (NODE-IL): Data-Efficient Imitation Learning for Long-Horizon Multi-Skill Robot Manipulation</title><author>Zhao, Shiyao ; Xu, Yucheng ; Kasaei, Mohammadreza ; Khadem, Mohsen ; Li, Zhibin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_108027363</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Data models</topic><topic>Imitation learning</topic><topic>Manipulator dynamics</topic><topic>Mathematical models</topic><topic>Robust control</topic><topic>Robustness</topic><topic>Scalability</topic><topic>Training</topic><topic>Translation</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Shiyao</creatorcontrib><creatorcontrib>Xu, Yucheng</creatorcontrib><creatorcontrib>Kasaei, Mohammadreza</creatorcontrib><creatorcontrib>Khadem, Mohsen</creatorcontrib><creatorcontrib>Li, Zhibin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Shiyao</au><au>Xu, Yucheng</au><au>Kasaei, Mohammadreza</au><au>Khadem, Mohsen</au><au>Li, Zhibin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Neural ODE-based Imitation Learning (NODE-IL): Data-Efficient Imitation Learning for Long-Horizon Multi-Skill Robot Manipulation</atitle><btitle>Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2024-10-14</date><risdate>2024</risdate><spage>8524</spage><epage>8530</epage><pages>8524-8530</pages><eissn>2153-0866</eissn><eisbn>9798350377705</eisbn><abstract>In robotics, acquiring new skills through Imitation Learning (IL) is crucial for handling diverse complex tasks. However, model-free IL faces challenges of data inefficiency and prolonged training time, whereas model-based methods struggle to obtain accurate nonlinear models. To address these challenges, we developed Neural ODE-based Imitation Learning (NODE-IL), a novel model-based imitation learning framework that employs Neural Ordinary Differential Equations (Neural ODEs) for learning task dynamics and control policies. NODE-IL comprises (1) Dynamic-NODE for learning the continuous differentiable task's transition dynamics model, and (2) Control-NODE for learning a long-horizon control policy in an MPC fashion, which are trained holistically. Extensively evaluated on challenging manipulation tasks, NODE-IL demonstrates significant advantages in data efficiency, requiring less than 70 samples to achieve robust performance. It outperforms Behavioral Cloning from Observation (BCO) and Gaussian Process Imitation Learning (GP-IL) methods, achieving 70% higher average success rate, and reducing translation errors for high-precision tasks, which demonstrates its robustness and accuracy, as an effective and efficient imitation learning approach for learning complex manipulation tasks.</abstract><pub>IEEE</pub><doi>10.1109/IROS58592.2024.10802736</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2153-0866 |
ispartof | Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems, 2024, p.8524-8530 |
issn | 2153-0866 |
language | eng |
recordid | cdi_ieee_primary_10802736 |
source | IEEE Xplore All Conference Series |
subjects | Accuracy Data models Imitation learning Manipulator dynamics Mathematical models Robust control Robustness Scalability Training Translation |
title | Neural ODE-based Imitation Learning (NODE-IL): Data-Efficient Imitation Learning for Long-Horizon Multi-Skill Robot Manipulation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A33%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Neural%20ODE-based%20Imitation%20Learning%20(NODE-IL):%20Data-Efficient%20Imitation%20Learning%20for%20Long-Horizon%20Multi-Skill%20Robot%20Manipulation&rft.btitle=Proceedings%20of%20the%20...%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Zhao,%20Shiyao&rft.date=2024-10-14&rft.spage=8524&rft.epage=8530&rft.pages=8524-8530&rft.eissn=2153-0866&rft_id=info:doi/10.1109/IROS58592.2024.10802736&rft.eisbn=9798350377705&rft_dat=%3Cieee_CHZPO%3E10802736%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_108027363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10802736&rfr_iscdi=true |