Loading…

Neural ODE-based Imitation Learning (NODE-IL): Data-Efficient Imitation Learning for Long-Horizon Multi-Skill Robot Manipulation

In robotics, acquiring new skills through Imitation Learning (IL) is crucial for handling diverse complex tasks. However, model-free IL faces challenges of data inefficiency and prolonged training time, whereas model-based methods struggle to obtain accurate nonlinear models. To address these challe...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhao, Shiyao, Xu, Yucheng, Kasaei, Mohammadreza, Khadem, Mohsen, Li, Zhibin
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 8530
container_issue
container_start_page 8524
container_title
container_volume
creator Zhao, Shiyao
Xu, Yucheng
Kasaei, Mohammadreza
Khadem, Mohsen
Li, Zhibin
description In robotics, acquiring new skills through Imitation Learning (IL) is crucial for handling diverse complex tasks. However, model-free IL faces challenges of data inefficiency and prolonged training time, whereas model-based methods struggle to obtain accurate nonlinear models. To address these challenges, we developed Neural ODE-based Imitation Learning (NODE-IL), a novel model-based imitation learning framework that employs Neural Ordinary Differential Equations (Neural ODEs) for learning task dynamics and control policies. NODE-IL comprises (1) Dynamic-NODE for learning the continuous differentiable task's transition dynamics model, and (2) Control-NODE for learning a long-horizon control policy in an MPC fashion, which are trained holistically. Extensively evaluated on challenging manipulation tasks, NODE-IL demonstrates significant advantages in data efficiency, requiring less than 70 samples to achieve robust performance. It outperforms Behavioral Cloning from Observation (BCO) and Gaussian Process Imitation Learning (GP-IL) methods, achieving 70% higher average success rate, and reducing translation errors for high-precision tasks, which demonstrates its robustness and accuracy, as an effective and efficient imitation learning approach for learning complex manipulation tasks.
doi_str_mv 10.1109/IROS58592.2024.10802736
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10802736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10802736</ieee_id><sourcerecordid>10802736</sourcerecordid><originalsourceid>FETCH-ieee_primary_108027363</originalsourceid><addsrcrecordid>eNqFj7FOwzAURQ0SEhXNHyDhEQanzzaOE1Ya1EhpK7XslQtO9cC1K8cZYOLTKQg2JKY7nHOGS8gVh5xzqCbNarlWpapELkDc5hxKEFoWJySrdFVKBVJrDeqUjARXkkFZFOck6_sXAOBwVKpiRD4WdojG0eW0ZlvT22fa7DGZhMHT1pro0e_o9eILN-3NHZ2aZFjddfiE1qe_5C5E2ga_Y7MQ8f1I5oNLyNav6BxdhW1IdG48Hgb3HY7JWWdcb7OfvSCXD_Xj_YyhtXZziLg38W3ze07-gz8B9qpSsQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Neural ODE-based Imitation Learning (NODE-IL): Data-Efficient Imitation Learning for Long-Horizon Multi-Skill Robot Manipulation</title><source>IEEE Xplore All Conference Series</source><creator>Zhao, Shiyao ; Xu, Yucheng ; Kasaei, Mohammadreza ; Khadem, Mohsen ; Li, Zhibin</creator><creatorcontrib>Zhao, Shiyao ; Xu, Yucheng ; Kasaei, Mohammadreza ; Khadem, Mohsen ; Li, Zhibin</creatorcontrib><description>In robotics, acquiring new skills through Imitation Learning (IL) is crucial for handling diverse complex tasks. However, model-free IL faces challenges of data inefficiency and prolonged training time, whereas model-based methods struggle to obtain accurate nonlinear models. To address these challenges, we developed Neural ODE-based Imitation Learning (NODE-IL), a novel model-based imitation learning framework that employs Neural Ordinary Differential Equations (Neural ODEs) for learning task dynamics and control policies. NODE-IL comprises (1) Dynamic-NODE for learning the continuous differentiable task's transition dynamics model, and (2) Control-NODE for learning a long-horizon control policy in an MPC fashion, which are trained holistically. Extensively evaluated on challenging manipulation tasks, NODE-IL demonstrates significant advantages in data efficiency, requiring less than 70 samples to achieve robust performance. It outperforms Behavioral Cloning from Observation (BCO) and Gaussian Process Imitation Learning (GP-IL) methods, achieving 70% higher average success rate, and reducing translation errors for high-precision tasks, which demonstrates its robustness and accuracy, as an effective and efficient imitation learning approach for learning complex manipulation tasks.</description><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9798350377705</identifier><identifier>DOI: 10.1109/IROS58592.2024.10802736</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Data models ; Imitation learning ; Manipulator dynamics ; Mathematical models ; Robust control ; Robustness ; Scalability ; Training ; Translation</subject><ispartof>Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems, 2024, p.8524-8530</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10802736$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10802736$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Shiyao</creatorcontrib><creatorcontrib>Xu, Yucheng</creatorcontrib><creatorcontrib>Kasaei, Mohammadreza</creatorcontrib><creatorcontrib>Khadem, Mohsen</creatorcontrib><creatorcontrib>Li, Zhibin</creatorcontrib><title>Neural ODE-based Imitation Learning (NODE-IL): Data-Efficient Imitation Learning for Long-Horizon Multi-Skill Robot Manipulation</title><title>Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>In robotics, acquiring new skills through Imitation Learning (IL) is crucial for handling diverse complex tasks. However, model-free IL faces challenges of data inefficiency and prolonged training time, whereas model-based methods struggle to obtain accurate nonlinear models. To address these challenges, we developed Neural ODE-based Imitation Learning (NODE-IL), a novel model-based imitation learning framework that employs Neural Ordinary Differential Equations (Neural ODEs) for learning task dynamics and control policies. NODE-IL comprises (1) Dynamic-NODE for learning the continuous differentiable task's transition dynamics model, and (2) Control-NODE for learning a long-horizon control policy in an MPC fashion, which are trained holistically. Extensively evaluated on challenging manipulation tasks, NODE-IL demonstrates significant advantages in data efficiency, requiring less than 70 samples to achieve robust performance. It outperforms Behavioral Cloning from Observation (BCO) and Gaussian Process Imitation Learning (GP-IL) methods, achieving 70% higher average success rate, and reducing translation errors for high-precision tasks, which demonstrates its robustness and accuracy, as an effective and efficient imitation learning approach for learning complex manipulation tasks.</description><subject>Accuracy</subject><subject>Data models</subject><subject>Imitation learning</subject><subject>Manipulator dynamics</subject><subject>Mathematical models</subject><subject>Robust control</subject><subject>Robustness</subject><subject>Scalability</subject><subject>Training</subject><subject>Translation</subject><issn>2153-0866</issn><isbn>9798350377705</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFj7FOwzAURQ0SEhXNHyDhEQanzzaOE1Ya1EhpK7XslQtO9cC1K8cZYOLTKQg2JKY7nHOGS8gVh5xzqCbNarlWpapELkDc5hxKEFoWJySrdFVKBVJrDeqUjARXkkFZFOck6_sXAOBwVKpiRD4WdojG0eW0ZlvT22fa7DGZhMHT1pro0e_o9eILN-3NHZ2aZFjddfiE1qe_5C5E2ga_Y7MQ8f1I5oNLyNav6BxdhW1IdG48Hgb3HY7JWWdcb7OfvSCXD_Xj_YyhtXZziLg38W3ze07-gz8B9qpSsQ</recordid><startdate>20241014</startdate><enddate>20241014</enddate><creator>Zhao, Shiyao</creator><creator>Xu, Yucheng</creator><creator>Kasaei, Mohammadreza</creator><creator>Khadem, Mohsen</creator><creator>Li, Zhibin</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20241014</creationdate><title>Neural ODE-based Imitation Learning (NODE-IL): Data-Efficient Imitation Learning for Long-Horizon Multi-Skill Robot Manipulation</title><author>Zhao, Shiyao ; Xu, Yucheng ; Kasaei, Mohammadreza ; Khadem, Mohsen ; Li, Zhibin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_108027363</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Data models</topic><topic>Imitation learning</topic><topic>Manipulator dynamics</topic><topic>Mathematical models</topic><topic>Robust control</topic><topic>Robustness</topic><topic>Scalability</topic><topic>Training</topic><topic>Translation</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Shiyao</creatorcontrib><creatorcontrib>Xu, Yucheng</creatorcontrib><creatorcontrib>Kasaei, Mohammadreza</creatorcontrib><creatorcontrib>Khadem, Mohsen</creatorcontrib><creatorcontrib>Li, Zhibin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Shiyao</au><au>Xu, Yucheng</au><au>Kasaei, Mohammadreza</au><au>Khadem, Mohsen</au><au>Li, Zhibin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Neural ODE-based Imitation Learning (NODE-IL): Data-Efficient Imitation Learning for Long-Horizon Multi-Skill Robot Manipulation</atitle><btitle>Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2024-10-14</date><risdate>2024</risdate><spage>8524</spage><epage>8530</epage><pages>8524-8530</pages><eissn>2153-0866</eissn><eisbn>9798350377705</eisbn><abstract>In robotics, acquiring new skills through Imitation Learning (IL) is crucial for handling diverse complex tasks. However, model-free IL faces challenges of data inefficiency and prolonged training time, whereas model-based methods struggle to obtain accurate nonlinear models. To address these challenges, we developed Neural ODE-based Imitation Learning (NODE-IL), a novel model-based imitation learning framework that employs Neural Ordinary Differential Equations (Neural ODEs) for learning task dynamics and control policies. NODE-IL comprises (1) Dynamic-NODE for learning the continuous differentiable task's transition dynamics model, and (2) Control-NODE for learning a long-horizon control policy in an MPC fashion, which are trained holistically. Extensively evaluated on challenging manipulation tasks, NODE-IL demonstrates significant advantages in data efficiency, requiring less than 70 samples to achieve robust performance. It outperforms Behavioral Cloning from Observation (BCO) and Gaussian Process Imitation Learning (GP-IL) methods, achieving 70% higher average success rate, and reducing translation errors for high-precision tasks, which demonstrates its robustness and accuracy, as an effective and efficient imitation learning approach for learning complex manipulation tasks.</abstract><pub>IEEE</pub><doi>10.1109/IROS58592.2024.10802736</doi></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2153-0866
ispartof Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems, 2024, p.8524-8530
issn 2153-0866
language eng
recordid cdi_ieee_primary_10802736
source IEEE Xplore All Conference Series
subjects Accuracy
Data models
Imitation learning
Manipulator dynamics
Mathematical models
Robust control
Robustness
Scalability
Training
Translation
title Neural ODE-based Imitation Learning (NODE-IL): Data-Efficient Imitation Learning for Long-Horizon Multi-Skill Robot Manipulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A33%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Neural%20ODE-based%20Imitation%20Learning%20(NODE-IL):%20Data-Efficient%20Imitation%20Learning%20for%20Long-Horizon%20Multi-Skill%20Robot%20Manipulation&rft.btitle=Proceedings%20of%20the%20...%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Zhao,%20Shiyao&rft.date=2024-10-14&rft.spage=8524&rft.epage=8530&rft.pages=8524-8530&rft.eissn=2153-0866&rft_id=info:doi/10.1109/IROS58592.2024.10802736&rft.eisbn=9798350377705&rft_dat=%3Cieee_CHZPO%3E10802736%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_108027363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10802736&rfr_iscdi=true