Loading…
Parallel state estimation for systems with integrated measurements
This paper presents parallel-in-time state estimation methods for systems with Slow-Rate inTegrated Measurements (SRTM). Integrated measurements are common in various applications, and they appear in analysis of data resulting from processes that require material collection or integration over the s...
Saved in:
Published in: | IEEE signal processing letters 2025, Vol.32, p.1-5 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5 |
container_issue | |
container_start_page | 1 |
container_title | IEEE signal processing letters |
container_volume | 32 |
creator | Yaghoobi, Fatemeh Sarkka, Simo |
description | This paper presents parallel-in-time state estimation methods for systems with Slow-Rate inTegrated Measurements (SRTM). Integrated measurements are common in various applications, and they appear in analysis of data resulting from processes that require material collection or integration over the sampling period. Current state estimation methods for SRTM are inherently sequential, preventing temporal parallelization in their standard form. This paper proposes parallel Bayesian filters and smoothers for linear Gaussian SRTM models. For that purpose, we develop a novel smoother for SRTM models and develop parallel-in-time filters and smoother for them using an associative scan-based parallel formulation. Empirical experiments ran on a GPU demonstrate the superior time complexity of the proposed methods over traditional sequential approaches. |
doi_str_mv | 10.1109/LSP.2024.3519258 |
format | article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10804629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10804629</ieee_id><sourcerecordid>10_1109_LSP_2024_3519258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1048-9deae0b627f09938c67b83ef488077c78e9def1dd1e4126ff9a5a30d1699c0a43</originalsourceid><addsrcrecordid>eNpNkE1LxDAURYMoOI7uXbjIH2h9L0nTZKmDjkLBAXVdMu2LVvohSUTm39thZuHq3cW5l8dh7BohRwR7W71ucgFC5bJAKwpzwhZYFCYTUuPpnKGEzFow5-wixi8AMGiKBbvfuOD6nnoek0vEKaZucKmbRu6nwOMuJhoi_-3SJ-_GRB9hplo-kIs_gQYaU7xkZ971ka6Od8neHx_eVk9Z9bJ-Xt1VWYOgTGZbcgRbLUoP1krT6HJrJHllDJRlUxqaCY9ti6RQaO-tK5yEFrW1DTgllwwOu02YYgzk6-8w_xp2NUK9d1DPDuq9g_roYK7cHCodEf3DDSgtrPwDw3VZVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Parallel state estimation for systems with integrated measurements</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yaghoobi, Fatemeh ; Sarkka, Simo</creator><creatorcontrib>Yaghoobi, Fatemeh ; Sarkka, Simo</creatorcontrib><description>This paper presents parallel-in-time state estimation methods for systems with Slow-Rate inTegrated Measurements (SRTM). Integrated measurements are common in various applications, and they appear in analysis of data resulting from processes that require material collection or integration over the sampling period. Current state estimation methods for SRTM are inherently sequential, preventing temporal parallelization in their standard form. This paper proposes parallel Bayesian filters and smoothers for linear Gaussian SRTM models. For that purpose, we develop a novel smoother for SRTM models and develop parallel-in-time filters and smoother for them using an associative scan-based parallel formulation. Empirical experiments ran on a GPU demonstrate the superior time complexity of the proposed methods over traditional sequential approaches.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2024.3519258</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>IEEE</publisher><subject>Atmospheric measurements ; Bayes methods ; integrated measurements ; Kalman filters ; Mathematical models ; parallel-in-time filtering and smoothing ; Particle measurements ; Signal processing algorithms ; Smoothing methods ; State estimation ; Time complexity ; Time measurement</subject><ispartof>IEEE signal processing letters, 2025, Vol.32, p.1-5</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7031-9354 ; 0000-0002-7329-1537</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10804629$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4023,27922,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Yaghoobi, Fatemeh</creatorcontrib><creatorcontrib>Sarkka, Simo</creatorcontrib><title>Parallel state estimation for systems with integrated measurements</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>This paper presents parallel-in-time state estimation methods for systems with Slow-Rate inTegrated Measurements (SRTM). Integrated measurements are common in various applications, and they appear in analysis of data resulting from processes that require material collection or integration over the sampling period. Current state estimation methods for SRTM are inherently sequential, preventing temporal parallelization in their standard form. This paper proposes parallel Bayesian filters and smoothers for linear Gaussian SRTM models. For that purpose, we develop a novel smoother for SRTM models and develop parallel-in-time filters and smoother for them using an associative scan-based parallel formulation. Empirical experiments ran on a GPU demonstrate the superior time complexity of the proposed methods over traditional sequential approaches.</description><subject>Atmospheric measurements</subject><subject>Bayes methods</subject><subject>integrated measurements</subject><subject>Kalman filters</subject><subject>Mathematical models</subject><subject>parallel-in-time filtering and smoothing</subject><subject>Particle measurements</subject><subject>Signal processing algorithms</subject><subject>Smoothing methods</subject><subject>State estimation</subject><subject>Time complexity</subject><subject>Time measurement</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpNkE1LxDAURYMoOI7uXbjIH2h9L0nTZKmDjkLBAXVdMu2LVvohSUTm39thZuHq3cW5l8dh7BohRwR7W71ucgFC5bJAKwpzwhZYFCYTUuPpnKGEzFow5-wixi8AMGiKBbvfuOD6nnoek0vEKaZucKmbRu6nwOMuJhoi_-3SJ-_GRB9hplo-kIs_gQYaU7xkZ971ka6Od8neHx_eVk9Z9bJ-Xt1VWYOgTGZbcgRbLUoP1krT6HJrJHllDJRlUxqaCY9ti6RQaO-tK5yEFrW1DTgllwwOu02YYgzk6-8w_xp2NUK9d1DPDuq9g_roYK7cHCodEf3DDSgtrPwDw3VZVg</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Yaghoobi, Fatemeh</creator><creator>Sarkka, Simo</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7031-9354</orcidid><orcidid>https://orcid.org/0000-0002-7329-1537</orcidid></search><sort><creationdate>2025</creationdate><title>Parallel state estimation for systems with integrated measurements</title><author>Yaghoobi, Fatemeh ; Sarkka, Simo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1048-9deae0b627f09938c67b83ef488077c78e9def1dd1e4126ff9a5a30d1699c0a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Atmospheric measurements</topic><topic>Bayes methods</topic><topic>integrated measurements</topic><topic>Kalman filters</topic><topic>Mathematical models</topic><topic>parallel-in-time filtering and smoothing</topic><topic>Particle measurements</topic><topic>Signal processing algorithms</topic><topic>Smoothing methods</topic><topic>State estimation</topic><topic>Time complexity</topic><topic>Time measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yaghoobi, Fatemeh</creatorcontrib><creatorcontrib>Sarkka, Simo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yaghoobi, Fatemeh</au><au>Sarkka, Simo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallel state estimation for systems with integrated measurements</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2025</date><risdate>2025</risdate><volume>32</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>This paper presents parallel-in-time state estimation methods for systems with Slow-Rate inTegrated Measurements (SRTM). Integrated measurements are common in various applications, and they appear in analysis of data resulting from processes that require material collection or integration over the sampling period. Current state estimation methods for SRTM are inherently sequential, preventing temporal parallelization in their standard form. This paper proposes parallel Bayesian filters and smoothers for linear Gaussian SRTM models. For that purpose, we develop a novel smoother for SRTM models and develop parallel-in-time filters and smoother for them using an associative scan-based parallel formulation. Empirical experiments ran on a GPU demonstrate the superior time complexity of the proposed methods over traditional sequential approaches.</abstract><pub>IEEE</pub><doi>10.1109/LSP.2024.3519258</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7031-9354</orcidid><orcidid>https://orcid.org/0000-0002-7329-1537</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2025, Vol.32, p.1-5 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_ieee_primary_10804629 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Atmospheric measurements Bayes methods integrated measurements Kalman filters Mathematical models parallel-in-time filtering and smoothing Particle measurements Signal processing algorithms Smoothing methods State estimation Time complexity Time measurement |
title | Parallel state estimation for systems with integrated measurements |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A39%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallel%20state%20estimation%20for%20systems%20with%20integrated%20measurements&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Yaghoobi,%20Fatemeh&rft.date=2025&rft.volume=32&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2024.3519258&rft_dat=%3Ccrossref_ieee_%3E10_1109_LSP_2024_3519258%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1048-9deae0b627f09938c67b83ef488077c78e9def1dd1e4126ff9a5a30d1699c0a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10804629&rfr_iscdi=true |