Loading…

Parallel state estimation for systems with integrated measurements

This paper presents parallel-in-time state estimation methods for systems with Slow-Rate inTegrated Measurements (SRTM). Integrated measurements are common in various applications, and they appear in analysis of data resulting from processes that require material collection or integration over the s...

Full description

Saved in:
Bibliographic Details
Published in:IEEE signal processing letters 2025, Vol.32, p.1-5
Main Authors: Yaghoobi, Fatemeh, Sarkka, Simo
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title IEEE signal processing letters
container_volume 32
creator Yaghoobi, Fatemeh
Sarkka, Simo
description This paper presents parallel-in-time state estimation methods for systems with Slow-Rate inTegrated Measurements (SRTM). Integrated measurements are common in various applications, and they appear in analysis of data resulting from processes that require material collection or integration over the sampling period. Current state estimation methods for SRTM are inherently sequential, preventing temporal parallelization in their standard form. This paper proposes parallel Bayesian filters and smoothers for linear Gaussian SRTM models. For that purpose, we develop a novel smoother for SRTM models and develop parallel-in-time filters and smoother for them using an associative scan-based parallel formulation. Empirical experiments ran on a GPU demonstrate the superior time complexity of the proposed methods over traditional sequential approaches.
doi_str_mv 10.1109/LSP.2024.3519258
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10804629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10804629</ieee_id><sourcerecordid>10_1109_LSP_2024_3519258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1048-9deae0b627f09938c67b83ef488077c78e9def1dd1e4126ff9a5a30d1699c0a43</originalsourceid><addsrcrecordid>eNpNkE1LxDAURYMoOI7uXbjIH2h9L0nTZKmDjkLBAXVdMu2LVvohSUTm39thZuHq3cW5l8dh7BohRwR7W71ucgFC5bJAKwpzwhZYFCYTUuPpnKGEzFow5-wixi8AMGiKBbvfuOD6nnoek0vEKaZucKmbRu6nwOMuJhoi_-3SJ-_GRB9hplo-kIs_gQYaU7xkZ971ka6Od8neHx_eVk9Z9bJ-Xt1VWYOgTGZbcgRbLUoP1krT6HJrJHllDJRlUxqaCY9ti6RQaO-tK5yEFrW1DTgllwwOu02YYgzk6-8w_xp2NUK9d1DPDuq9g_roYK7cHCodEf3DDSgtrPwDw3VZVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Parallel state estimation for systems with integrated measurements</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yaghoobi, Fatemeh ; Sarkka, Simo</creator><creatorcontrib>Yaghoobi, Fatemeh ; Sarkka, Simo</creatorcontrib><description>This paper presents parallel-in-time state estimation methods for systems with Slow-Rate inTegrated Measurements (SRTM). Integrated measurements are common in various applications, and they appear in analysis of data resulting from processes that require material collection or integration over the sampling period. Current state estimation methods for SRTM are inherently sequential, preventing temporal parallelization in their standard form. This paper proposes parallel Bayesian filters and smoothers for linear Gaussian SRTM models. For that purpose, we develop a novel smoother for SRTM models and develop parallel-in-time filters and smoother for them using an associative scan-based parallel formulation. Empirical experiments ran on a GPU demonstrate the superior time complexity of the proposed methods over traditional sequential approaches.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2024.3519258</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>IEEE</publisher><subject>Atmospheric measurements ; Bayes methods ; integrated measurements ; Kalman filters ; Mathematical models ; parallel-in-time filtering and smoothing ; Particle measurements ; Signal processing algorithms ; Smoothing methods ; State estimation ; Time complexity ; Time measurement</subject><ispartof>IEEE signal processing letters, 2025, Vol.32, p.1-5</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7031-9354 ; 0000-0002-7329-1537</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10804629$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4023,27922,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Yaghoobi, Fatemeh</creatorcontrib><creatorcontrib>Sarkka, Simo</creatorcontrib><title>Parallel state estimation for systems with integrated measurements</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>This paper presents parallel-in-time state estimation methods for systems with Slow-Rate inTegrated Measurements (SRTM). Integrated measurements are common in various applications, and they appear in analysis of data resulting from processes that require material collection or integration over the sampling period. Current state estimation methods for SRTM are inherently sequential, preventing temporal parallelization in their standard form. This paper proposes parallel Bayesian filters and smoothers for linear Gaussian SRTM models. For that purpose, we develop a novel smoother for SRTM models and develop parallel-in-time filters and smoother for them using an associative scan-based parallel formulation. Empirical experiments ran on a GPU demonstrate the superior time complexity of the proposed methods over traditional sequential approaches.</description><subject>Atmospheric measurements</subject><subject>Bayes methods</subject><subject>integrated measurements</subject><subject>Kalman filters</subject><subject>Mathematical models</subject><subject>parallel-in-time filtering and smoothing</subject><subject>Particle measurements</subject><subject>Signal processing algorithms</subject><subject>Smoothing methods</subject><subject>State estimation</subject><subject>Time complexity</subject><subject>Time measurement</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpNkE1LxDAURYMoOI7uXbjIH2h9L0nTZKmDjkLBAXVdMu2LVvohSUTm39thZuHq3cW5l8dh7BohRwR7W71ucgFC5bJAKwpzwhZYFCYTUuPpnKGEzFow5-wixi8AMGiKBbvfuOD6nnoek0vEKaZucKmbRu6nwOMuJhoi_-3SJ-_GRB9hplo-kIs_gQYaU7xkZ971ka6Od8neHx_eVk9Z9bJ-Xt1VWYOgTGZbcgRbLUoP1krT6HJrJHllDJRlUxqaCY9ti6RQaO-tK5yEFrW1DTgllwwOu02YYgzk6-8w_xp2NUK9d1DPDuq9g_roYK7cHCodEf3DDSgtrPwDw3VZVg</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Yaghoobi, Fatemeh</creator><creator>Sarkka, Simo</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7031-9354</orcidid><orcidid>https://orcid.org/0000-0002-7329-1537</orcidid></search><sort><creationdate>2025</creationdate><title>Parallel state estimation for systems with integrated measurements</title><author>Yaghoobi, Fatemeh ; Sarkka, Simo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1048-9deae0b627f09938c67b83ef488077c78e9def1dd1e4126ff9a5a30d1699c0a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Atmospheric measurements</topic><topic>Bayes methods</topic><topic>integrated measurements</topic><topic>Kalman filters</topic><topic>Mathematical models</topic><topic>parallel-in-time filtering and smoothing</topic><topic>Particle measurements</topic><topic>Signal processing algorithms</topic><topic>Smoothing methods</topic><topic>State estimation</topic><topic>Time complexity</topic><topic>Time measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yaghoobi, Fatemeh</creatorcontrib><creatorcontrib>Sarkka, Simo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yaghoobi, Fatemeh</au><au>Sarkka, Simo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallel state estimation for systems with integrated measurements</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2025</date><risdate>2025</risdate><volume>32</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>This paper presents parallel-in-time state estimation methods for systems with Slow-Rate inTegrated Measurements (SRTM). Integrated measurements are common in various applications, and they appear in analysis of data resulting from processes that require material collection or integration over the sampling period. Current state estimation methods for SRTM are inherently sequential, preventing temporal parallelization in their standard form. This paper proposes parallel Bayesian filters and smoothers for linear Gaussian SRTM models. For that purpose, we develop a novel smoother for SRTM models and develop parallel-in-time filters and smoother for them using an associative scan-based parallel formulation. Empirical experiments ran on a GPU demonstrate the superior time complexity of the proposed methods over traditional sequential approaches.</abstract><pub>IEEE</pub><doi>10.1109/LSP.2024.3519258</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7031-9354</orcidid><orcidid>https://orcid.org/0000-0002-7329-1537</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2025, Vol.32, p.1-5
issn 1070-9908
1558-2361
language eng
recordid cdi_ieee_primary_10804629
source IEEE Electronic Library (IEL) Journals
subjects Atmospheric measurements
Bayes methods
integrated measurements
Kalman filters
Mathematical models
parallel-in-time filtering and smoothing
Particle measurements
Signal processing algorithms
Smoothing methods
State estimation
Time complexity
Time measurement
title Parallel state estimation for systems with integrated measurements
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A39%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallel%20state%20estimation%20for%20systems%20with%20integrated%20measurements&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Yaghoobi,%20Fatemeh&rft.date=2025&rft.volume=32&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2024.3519258&rft_dat=%3Ccrossref_ieee_%3E10_1109_LSP_2024_3519258%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1048-9deae0b627f09938c67b83ef488077c78e9def1dd1e4126ff9a5a30d1699c0a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10804629&rfr_iscdi=true