Loading…

Computational Cost and Implementation Analysis of a Wavelet-Based Edge Computing Method for Energy-Harvesting Industrial IoT Sensors

The rapid advancement of Industrial Internet of Things (IIoT) has heightened the need for efficient data processing and transmission, particularly in energy-constrained environments. This study introduces a novel wavelet-based edge computing methodology designed specifically for low-power IIoT senso...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2024-12, p.1-1
Main Authors: Konecny, J., Choutka, J., Hercik, R., Koziorek, J., Navikas, D., Andriukaitis, D., Prauzek, M.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume
creator Konecny, J.
Choutka, J.
Hercik, R.
Koziorek, J.
Navikas, D.
Andriukaitis, D.
Prauzek, M.
description The rapid advancement of Industrial Internet of Things (IIoT) has heightened the need for efficient data processing and transmission, particularly in energy-constrained environments. This study introduces a novel wavelet-based edge computing methodology designed specifically for low-power IIoT sensors using energy harvesting. Unlike existing implementations that rely on computationally complex instructions, this approach optimizes the wavelet transform (WT) for resource-limited microcontrollers (MCUs) without sacrificing data quality. By leveraging a lightweight assembly-level WT implementation, the proposed solution significantly reduces computational costs and energy consumption. A comprehensive analysis performed on ARM Cortex-M7 MCU on an industrial vibration dataset demonstrates energy savings of assembly language (ASM) up to 87% with discrete wavelet transforms (DWT) and 32.1% with fast wavelet transforms (FWT), compared to C-based implementations. This work is distinct in its ability to dynamically adjust data transmission levels based on available energy, ensuring robust operation in batteryless IIoT environments. Moreover, the method offers flexibility in signal reconstruction, supporting scalable compression ratios and facilitating long-term predictive maintenance applications, making it a pioneering step in sustainable industrial monitoring.
doi_str_mv 10.1109/ACCESS.2024.3519715
format article
fullrecord <record><control><sourceid>ieee</sourceid><recordid>TN_cdi_ieee_primary_10806679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10806679</ieee_id><sourcerecordid>10806679</sourcerecordid><originalsourceid>FETCH-ieee_primary_108066793</originalsourceid><addsrcrecordid>eNqFzcFKxDAQBuAgCC66T6CHeYHWpLXt9riGyvbgqQsel4FMa6RNSia70LsPbnG9O5cf_g_-EeJRyVQpWT_vtW66Ls1k9pLmhaorVdyITabKOsmLvLwTW-Yvud5urYpqI761n-ZzxGi9wxG05wjoDLTTPNJE7iqwX3Fhy-B7QPjAC40Uk1dkMtCYgeA6Y90A7xQ_vYHeB2gchWFJDhguxL_YOnPmGOz6qvVH6MixD_wgbnscmbZ_eS-e3pqjPiSWiE5zsBOG5aTkTpZlVef_8A_ik1Kh</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computational Cost and Implementation Analysis of a Wavelet-Based Edge Computing Method for Energy-Harvesting Industrial IoT Sensors</title><source>IEEE Open Access Journals</source><creator>Konecny, J. ; Choutka, J. ; Hercik, R. ; Koziorek, J. ; Navikas, D. ; Andriukaitis, D. ; Prauzek, M.</creator><creatorcontrib>Konecny, J. ; Choutka, J. ; Hercik, R. ; Koziorek, J. ; Navikas, D. ; Andriukaitis, D. ; Prauzek, M.</creatorcontrib><description>The rapid advancement of Industrial Internet of Things (IIoT) has heightened the need for efficient data processing and transmission, particularly in energy-constrained environments. This study introduces a novel wavelet-based edge computing methodology designed specifically for low-power IIoT sensors using energy harvesting. Unlike existing implementations that rely on computationally complex instructions, this approach optimizes the wavelet transform (WT) for resource-limited microcontrollers (MCUs) without sacrificing data quality. By leveraging a lightweight assembly-level WT implementation, the proposed solution significantly reduces computational costs and energy consumption. A comprehensive analysis performed on ARM Cortex-M7 MCU on an industrial vibration dataset demonstrates energy savings of assembly language (ASM) up to 87% with discrete wavelet transforms (DWT) and 32.1% with fast wavelet transforms (FWT), compared to C-based implementations. This work is distinct in its ability to dynamically adjust data transmission levels based on available energy, ensuring robust operation in batteryless IIoT environments. Moreover, the method offers flexibility in signal reconstruction, supporting scalable compression ratios and facilitating long-term predictive maintenance applications, making it a pioneering step in sustainable industrial monitoring.</description><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3519715</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data compression ; Edge computing ; Energy harvesting ; Image coding ; Image reconstruction ; Implementation optimization ; Industrial Internet of Things ; Monitoring ; Optimization ; Reviews ; Vibrations ; Wavelet transform</subject><ispartof>IEEE access, 2024-12, p.1-1</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7138-887X ; 0000-0001-8292-225X ; 0000-0001-7071-7566 ; 0000-0002-0496-2915 ; 0000-0002-9862-8917 ; 0000-0003-1348-1328</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10806679$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Konecny, J.</creatorcontrib><creatorcontrib>Choutka, J.</creatorcontrib><creatorcontrib>Hercik, R.</creatorcontrib><creatorcontrib>Koziorek, J.</creatorcontrib><creatorcontrib>Navikas, D.</creatorcontrib><creatorcontrib>Andriukaitis, D.</creatorcontrib><creatorcontrib>Prauzek, M.</creatorcontrib><title>Computational Cost and Implementation Analysis of a Wavelet-Based Edge Computing Method for Energy-Harvesting Industrial IoT Sensors</title><title>IEEE access</title><addtitle>Access</addtitle><description>The rapid advancement of Industrial Internet of Things (IIoT) has heightened the need for efficient data processing and transmission, particularly in energy-constrained environments. This study introduces a novel wavelet-based edge computing methodology designed specifically for low-power IIoT sensors using energy harvesting. Unlike existing implementations that rely on computationally complex instructions, this approach optimizes the wavelet transform (WT) for resource-limited microcontrollers (MCUs) without sacrificing data quality. By leveraging a lightweight assembly-level WT implementation, the proposed solution significantly reduces computational costs and energy consumption. A comprehensive analysis performed on ARM Cortex-M7 MCU on an industrial vibration dataset demonstrates energy savings of assembly language (ASM) up to 87% with discrete wavelet transforms (DWT) and 32.1% with fast wavelet transforms (FWT), compared to C-based implementations. This work is distinct in its ability to dynamically adjust data transmission levels based on available energy, ensuring robust operation in batteryless IIoT environments. Moreover, the method offers flexibility in signal reconstruction, supporting scalable compression ratios and facilitating long-term predictive maintenance applications, making it a pioneering step in sustainable industrial monitoring.</description><subject>Data compression</subject><subject>Edge computing</subject><subject>Energy harvesting</subject><subject>Image coding</subject><subject>Image reconstruction</subject><subject>Implementation optimization</subject><subject>Industrial Internet of Things</subject><subject>Monitoring</subject><subject>Optimization</subject><subject>Reviews</subject><subject>Vibrations</subject><subject>Wavelet transform</subject><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNqFzcFKxDAQBuAgCC66T6CHeYHWpLXt9riGyvbgqQsel4FMa6RNSia70LsPbnG9O5cf_g_-EeJRyVQpWT_vtW66Ls1k9pLmhaorVdyITabKOsmLvLwTW-Yvud5urYpqI761n-ZzxGi9wxG05wjoDLTTPNJE7iqwX3Fhy-B7QPjAC40Uk1dkMtCYgeA6Y90A7xQ_vYHeB2gchWFJDhguxL_YOnPmGOz6qvVH6MixD_wgbnscmbZ_eS-e3pqjPiSWiE5zsBOG5aTkTpZlVef_8A_ik1Kh</recordid><startdate>20241217</startdate><enddate>20241217</enddate><creator>Konecny, J.</creator><creator>Choutka, J.</creator><creator>Hercik, R.</creator><creator>Koziorek, J.</creator><creator>Navikas, D.</creator><creator>Andriukaitis, D.</creator><creator>Prauzek, M.</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0002-7138-887X</orcidid><orcidid>https://orcid.org/0000-0001-8292-225X</orcidid><orcidid>https://orcid.org/0000-0001-7071-7566</orcidid><orcidid>https://orcid.org/0000-0002-0496-2915</orcidid><orcidid>https://orcid.org/0000-0002-9862-8917</orcidid><orcidid>https://orcid.org/0000-0003-1348-1328</orcidid></search><sort><creationdate>20241217</creationdate><title>Computational Cost and Implementation Analysis of a Wavelet-Based Edge Computing Method for Energy-Harvesting Industrial IoT Sensors</title><author>Konecny, J. ; Choutka, J. ; Hercik, R. ; Koziorek, J. ; Navikas, D. ; Andriukaitis, D. ; Prauzek, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_108066793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data compression</topic><topic>Edge computing</topic><topic>Energy harvesting</topic><topic>Image coding</topic><topic>Image reconstruction</topic><topic>Implementation optimization</topic><topic>Industrial Internet of Things</topic><topic>Monitoring</topic><topic>Optimization</topic><topic>Reviews</topic><topic>Vibrations</topic><topic>Wavelet transform</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Konecny, J.</creatorcontrib><creatorcontrib>Choutka, J.</creatorcontrib><creatorcontrib>Hercik, R.</creatorcontrib><creatorcontrib>Koziorek, J.</creatorcontrib><creatorcontrib>Navikas, D.</creatorcontrib><creatorcontrib>Andriukaitis, D.</creatorcontrib><creatorcontrib>Prauzek, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Konecny, J.</au><au>Choutka, J.</au><au>Hercik, R.</au><au>Koziorek, J.</au><au>Navikas, D.</au><au>Andriukaitis, D.</au><au>Prauzek, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Cost and Implementation Analysis of a Wavelet-Based Edge Computing Method for Energy-Harvesting Industrial IoT Sensors</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024-12-17</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The rapid advancement of Industrial Internet of Things (IIoT) has heightened the need for efficient data processing and transmission, particularly in energy-constrained environments. This study introduces a novel wavelet-based edge computing methodology designed specifically for low-power IIoT sensors using energy harvesting. Unlike existing implementations that rely on computationally complex instructions, this approach optimizes the wavelet transform (WT) for resource-limited microcontrollers (MCUs) without sacrificing data quality. By leveraging a lightweight assembly-level WT implementation, the proposed solution significantly reduces computational costs and energy consumption. A comprehensive analysis performed on ARM Cortex-M7 MCU on an industrial vibration dataset demonstrates energy savings of assembly language (ASM) up to 87% with discrete wavelet transforms (DWT) and 32.1% with fast wavelet transforms (FWT), compared to C-based implementations. This work is distinct in its ability to dynamically adjust data transmission levels based on available energy, ensuring robust operation in batteryless IIoT environments. Moreover, the method offers flexibility in signal reconstruction, supporting scalable compression ratios and facilitating long-term predictive maintenance applications, making it a pioneering step in sustainable industrial monitoring.</abstract><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3519715</doi><orcidid>https://orcid.org/0000-0002-7138-887X</orcidid><orcidid>https://orcid.org/0000-0001-8292-225X</orcidid><orcidid>https://orcid.org/0000-0001-7071-7566</orcidid><orcidid>https://orcid.org/0000-0002-0496-2915</orcidid><orcidid>https://orcid.org/0000-0002-9862-8917</orcidid><orcidid>https://orcid.org/0000-0003-1348-1328</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2169-3536
ispartof IEEE access, 2024-12, p.1-1
issn 2169-3536
language eng
recordid cdi_ieee_primary_10806679
source IEEE Open Access Journals
subjects Data compression
Edge computing
Energy harvesting
Image coding
Image reconstruction
Implementation optimization
Industrial Internet of Things
Monitoring
Optimization
Reviews
Vibrations
Wavelet transform
title Computational Cost and Implementation Analysis of a Wavelet-Based Edge Computing Method for Energy-Harvesting Industrial IoT Sensors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A23%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Cost%20and%20Implementation%20Analysis%20of%20a%20Wavelet-Based%20Edge%20Computing%20Method%20for%20Energy-Harvesting%20Industrial%20IoT%20Sensors&rft.jtitle=IEEE%20access&rft.au=Konecny,%20J.&rft.date=2024-12-17&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3519715&rft_dat=%3Cieee%3E10806679%3C/ieee%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_108066793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10806679&rfr_iscdi=true