Loading…
Computational Cost and Implementation Analysis of a Wavelet-Based Edge Computing Method for Energy-Harvesting Industrial IoT Sensors
The rapid advancement of Industrial Internet of Things (IIoT) has heightened the need for efficient data processing and transmission, particularly in energy-constrained environments. This study introduces a novel wavelet-based edge computing methodology designed specifically for low-power IIoT senso...
Saved in:
Published in: | IEEE access 2024-12, p.1-1 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | |
creator | Konecny, J. Choutka, J. Hercik, R. Koziorek, J. Navikas, D. Andriukaitis, D. Prauzek, M. |
description | The rapid advancement of Industrial Internet of Things (IIoT) has heightened the need for efficient data processing and transmission, particularly in energy-constrained environments. This study introduces a novel wavelet-based edge computing methodology designed specifically for low-power IIoT sensors using energy harvesting. Unlike existing implementations that rely on computationally complex instructions, this approach optimizes the wavelet transform (WT) for resource-limited microcontrollers (MCUs) without sacrificing data quality. By leveraging a lightweight assembly-level WT implementation, the proposed solution significantly reduces computational costs and energy consumption. A comprehensive analysis performed on ARM Cortex-M7 MCU on an industrial vibration dataset demonstrates energy savings of assembly language (ASM) up to 87% with discrete wavelet transforms (DWT) and 32.1% with fast wavelet transforms (FWT), compared to C-based implementations. This work is distinct in its ability to dynamically adjust data transmission levels based on available energy, ensuring robust operation in batteryless IIoT environments. Moreover, the method offers flexibility in signal reconstruction, supporting scalable compression ratios and facilitating long-term predictive maintenance applications, making it a pioneering step in sustainable industrial monitoring. |
doi_str_mv | 10.1109/ACCESS.2024.3519715 |
format | article |
fullrecord | <record><control><sourceid>ieee</sourceid><recordid>TN_cdi_ieee_primary_10806679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10806679</ieee_id><sourcerecordid>10806679</sourcerecordid><originalsourceid>FETCH-ieee_primary_108066793</originalsourceid><addsrcrecordid>eNqFzcFKxDAQBuAgCC66T6CHeYHWpLXt9riGyvbgqQsel4FMa6RNSia70LsPbnG9O5cf_g_-EeJRyVQpWT_vtW66Ls1k9pLmhaorVdyITabKOsmLvLwTW-Yvud5urYpqI761n-ZzxGi9wxG05wjoDLTTPNJE7iqwX3Fhy-B7QPjAC40Uk1dkMtCYgeA6Y90A7xQ_vYHeB2gchWFJDhguxL_YOnPmGOz6qvVH6MixD_wgbnscmbZ_eS-e3pqjPiSWiE5zsBOG5aTkTpZlVef_8A_ik1Kh</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computational Cost and Implementation Analysis of a Wavelet-Based Edge Computing Method for Energy-Harvesting Industrial IoT Sensors</title><source>IEEE Open Access Journals</source><creator>Konecny, J. ; Choutka, J. ; Hercik, R. ; Koziorek, J. ; Navikas, D. ; Andriukaitis, D. ; Prauzek, M.</creator><creatorcontrib>Konecny, J. ; Choutka, J. ; Hercik, R. ; Koziorek, J. ; Navikas, D. ; Andriukaitis, D. ; Prauzek, M.</creatorcontrib><description>The rapid advancement of Industrial Internet of Things (IIoT) has heightened the need for efficient data processing and transmission, particularly in energy-constrained environments. This study introduces a novel wavelet-based edge computing methodology designed specifically for low-power IIoT sensors using energy harvesting. Unlike existing implementations that rely on computationally complex instructions, this approach optimizes the wavelet transform (WT) for resource-limited microcontrollers (MCUs) without sacrificing data quality. By leveraging a lightweight assembly-level WT implementation, the proposed solution significantly reduces computational costs and energy consumption. A comprehensive analysis performed on ARM Cortex-M7 MCU on an industrial vibration dataset demonstrates energy savings of assembly language (ASM) up to 87% with discrete wavelet transforms (DWT) and 32.1% with fast wavelet transforms (FWT), compared to C-based implementations. This work is distinct in its ability to dynamically adjust data transmission levels based on available energy, ensuring robust operation in batteryless IIoT environments. Moreover, the method offers flexibility in signal reconstruction, supporting scalable compression ratios and facilitating long-term predictive maintenance applications, making it a pioneering step in sustainable industrial monitoring.</description><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3519715</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data compression ; Edge computing ; Energy harvesting ; Image coding ; Image reconstruction ; Implementation optimization ; Industrial Internet of Things ; Monitoring ; Optimization ; Reviews ; Vibrations ; Wavelet transform</subject><ispartof>IEEE access, 2024-12, p.1-1</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7138-887X ; 0000-0001-8292-225X ; 0000-0001-7071-7566 ; 0000-0002-0496-2915 ; 0000-0002-9862-8917 ; 0000-0003-1348-1328</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10806679$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Konecny, J.</creatorcontrib><creatorcontrib>Choutka, J.</creatorcontrib><creatorcontrib>Hercik, R.</creatorcontrib><creatorcontrib>Koziorek, J.</creatorcontrib><creatorcontrib>Navikas, D.</creatorcontrib><creatorcontrib>Andriukaitis, D.</creatorcontrib><creatorcontrib>Prauzek, M.</creatorcontrib><title>Computational Cost and Implementation Analysis of a Wavelet-Based Edge Computing Method for Energy-Harvesting Industrial IoT Sensors</title><title>IEEE access</title><addtitle>Access</addtitle><description>The rapid advancement of Industrial Internet of Things (IIoT) has heightened the need for efficient data processing and transmission, particularly in energy-constrained environments. This study introduces a novel wavelet-based edge computing methodology designed specifically for low-power IIoT sensors using energy harvesting. Unlike existing implementations that rely on computationally complex instructions, this approach optimizes the wavelet transform (WT) for resource-limited microcontrollers (MCUs) without sacrificing data quality. By leveraging a lightweight assembly-level WT implementation, the proposed solution significantly reduces computational costs and energy consumption. A comprehensive analysis performed on ARM Cortex-M7 MCU on an industrial vibration dataset demonstrates energy savings of assembly language (ASM) up to 87% with discrete wavelet transforms (DWT) and 32.1% with fast wavelet transforms (FWT), compared to C-based implementations. This work is distinct in its ability to dynamically adjust data transmission levels based on available energy, ensuring robust operation in batteryless IIoT environments. Moreover, the method offers flexibility in signal reconstruction, supporting scalable compression ratios and facilitating long-term predictive maintenance applications, making it a pioneering step in sustainable industrial monitoring.</description><subject>Data compression</subject><subject>Edge computing</subject><subject>Energy harvesting</subject><subject>Image coding</subject><subject>Image reconstruction</subject><subject>Implementation optimization</subject><subject>Industrial Internet of Things</subject><subject>Monitoring</subject><subject>Optimization</subject><subject>Reviews</subject><subject>Vibrations</subject><subject>Wavelet transform</subject><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNqFzcFKxDAQBuAgCC66T6CHeYHWpLXt9riGyvbgqQsel4FMa6RNSia70LsPbnG9O5cf_g_-EeJRyVQpWT_vtW66Ls1k9pLmhaorVdyITabKOsmLvLwTW-Yvud5urYpqI761n-ZzxGi9wxG05wjoDLTTPNJE7iqwX3Fhy-B7QPjAC40Uk1dkMtCYgeA6Y90A7xQ_vYHeB2gchWFJDhguxL_YOnPmGOz6qvVH6MixD_wgbnscmbZ_eS-e3pqjPiSWiE5zsBOG5aTkTpZlVef_8A_ik1Kh</recordid><startdate>20241217</startdate><enddate>20241217</enddate><creator>Konecny, J.</creator><creator>Choutka, J.</creator><creator>Hercik, R.</creator><creator>Koziorek, J.</creator><creator>Navikas, D.</creator><creator>Andriukaitis, D.</creator><creator>Prauzek, M.</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0002-7138-887X</orcidid><orcidid>https://orcid.org/0000-0001-8292-225X</orcidid><orcidid>https://orcid.org/0000-0001-7071-7566</orcidid><orcidid>https://orcid.org/0000-0002-0496-2915</orcidid><orcidid>https://orcid.org/0000-0002-9862-8917</orcidid><orcidid>https://orcid.org/0000-0003-1348-1328</orcidid></search><sort><creationdate>20241217</creationdate><title>Computational Cost and Implementation Analysis of a Wavelet-Based Edge Computing Method for Energy-Harvesting Industrial IoT Sensors</title><author>Konecny, J. ; Choutka, J. ; Hercik, R. ; Koziorek, J. ; Navikas, D. ; Andriukaitis, D. ; Prauzek, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_108066793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data compression</topic><topic>Edge computing</topic><topic>Energy harvesting</topic><topic>Image coding</topic><topic>Image reconstruction</topic><topic>Implementation optimization</topic><topic>Industrial Internet of Things</topic><topic>Monitoring</topic><topic>Optimization</topic><topic>Reviews</topic><topic>Vibrations</topic><topic>Wavelet transform</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Konecny, J.</creatorcontrib><creatorcontrib>Choutka, J.</creatorcontrib><creatorcontrib>Hercik, R.</creatorcontrib><creatorcontrib>Koziorek, J.</creatorcontrib><creatorcontrib>Navikas, D.</creatorcontrib><creatorcontrib>Andriukaitis, D.</creatorcontrib><creatorcontrib>Prauzek, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Konecny, J.</au><au>Choutka, J.</au><au>Hercik, R.</au><au>Koziorek, J.</au><au>Navikas, D.</au><au>Andriukaitis, D.</au><au>Prauzek, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Cost and Implementation Analysis of a Wavelet-Based Edge Computing Method for Energy-Harvesting Industrial IoT Sensors</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024-12-17</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The rapid advancement of Industrial Internet of Things (IIoT) has heightened the need for efficient data processing and transmission, particularly in energy-constrained environments. This study introduces a novel wavelet-based edge computing methodology designed specifically for low-power IIoT sensors using energy harvesting. Unlike existing implementations that rely on computationally complex instructions, this approach optimizes the wavelet transform (WT) for resource-limited microcontrollers (MCUs) without sacrificing data quality. By leveraging a lightweight assembly-level WT implementation, the proposed solution significantly reduces computational costs and energy consumption. A comprehensive analysis performed on ARM Cortex-M7 MCU on an industrial vibration dataset demonstrates energy savings of assembly language (ASM) up to 87% with discrete wavelet transforms (DWT) and 32.1% with fast wavelet transforms (FWT), compared to C-based implementations. This work is distinct in its ability to dynamically adjust data transmission levels based on available energy, ensuring robust operation in batteryless IIoT environments. Moreover, the method offers flexibility in signal reconstruction, supporting scalable compression ratios and facilitating long-term predictive maintenance applications, making it a pioneering step in sustainable industrial monitoring.</abstract><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3519715</doi><orcidid>https://orcid.org/0000-0002-7138-887X</orcidid><orcidid>https://orcid.org/0000-0001-8292-225X</orcidid><orcidid>https://orcid.org/0000-0001-7071-7566</orcidid><orcidid>https://orcid.org/0000-0002-0496-2915</orcidid><orcidid>https://orcid.org/0000-0002-9862-8917</orcidid><orcidid>https://orcid.org/0000-0003-1348-1328</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2169-3536 |
ispartof | IEEE access, 2024-12, p.1-1 |
issn | 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10806679 |
source | IEEE Open Access Journals |
subjects | Data compression Edge computing Energy harvesting Image coding Image reconstruction Implementation optimization Industrial Internet of Things Monitoring Optimization Reviews Vibrations Wavelet transform |
title | Computational Cost and Implementation Analysis of a Wavelet-Based Edge Computing Method for Energy-Harvesting Industrial IoT Sensors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A23%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Cost%20and%20Implementation%20Analysis%20of%20a%20Wavelet-Based%20Edge%20Computing%20Method%20for%20Energy-Harvesting%20Industrial%20IoT%20Sensors&rft.jtitle=IEEE%20access&rft.au=Konecny,%20J.&rft.date=2024-12-17&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3519715&rft_dat=%3Cieee%3E10806679%3C/ieee%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_108066793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10806679&rfr_iscdi=true |