Loading…

Sum Rate Maximization for RIS-assisted UAV-IoT Networks using Sample Efficient SAC Technique

Deep Reinforcement Learning (DRL) based algorithms have been widely adopted to solve the non-convex optimization problems in Reconfigurable Intelligent Surface (RIS)assisted Unmanned Aerial Vehicle (UAV) systems for establishing uninterrupted wireless connections with the ground Internet of Things (...

Full description

Saved in:
Bibliographic Details
Main Authors: Adhikari, Bhagawat, Khwaja, Ahmed Shaharyar, Jaseemuddin, Muhammad, Anpalagan, Alagan
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 468
container_issue
container_start_page 463
container_title
container_volume
creator Adhikari, Bhagawat
Khwaja, Ahmed Shaharyar
Jaseemuddin, Muhammad
Anpalagan, Alagan
description Deep Reinforcement Learning (DRL) based algorithms have been widely adopted to solve the non-convex optimization problems in Reconfigurable Intelligent Surface (RIS)assisted Unmanned Aerial Vehicle (UAV) systems for establishing uninterrupted wireless connections with the ground Internet of Things (IoT) devices. However, model-free DRL techniques such as Deep Deterministic Policy Gradient (DDPG), Deep Q-learning (DQN) and Double Deep Q-learning (DDQN) suffer from low convergence and poor sample efficiency. Use of off-policy DRL techniques can be an appropriate solution to enhance the sample efficiency and training speed in vulnerable and fast changing environments involving multiple IoTs. In this paper, we use a novel off-policy actor-critic DRL technique called Soft ActorCritic (SAC) to solve the sum rate maximization problem in RIS-assisted UAV-IoT networks in dense urban environment. We perform simulations to compare the results of the proposed sample efficient SAC algorithm with the existing DDPG technique with and without RIS optimization. Our simulations show that SAC with optimized RIS outperforms the model-free DDPG technique in terms of maximizing the sum rate.
doi_str_mv 10.1109/WF-IoT62078.2024.10811439
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10811439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10811439</ieee_id><sourcerecordid>10811439</sourcerecordid><originalsourceid>FETCH-ieee_primary_108114393</originalsourceid><addsrcrecordid>eNqFjs1OwkAURkcTE4n0DVhcH6D13k5lpktCILLABa26MSETuNWrtIXONP48vZLomtWXnLM4n1LXhAkR5jdP83jRluMUjU1STLOE0BJlOj9TUW5yq29RG41E52qQmrGNyejsUkXevyGiJvPL7EA9F30NKxcYlu5Tavl2QdoGqraD1aKInffiA2_hYfJ47ME9h4-2e_fQe2leoHD1fscwqyrZCDcBiskUSt68NnLoeaguKrfzHP3tlRrNZ-X0LhZmXu87qV33tf4_rk_oH07fRqM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Sum Rate Maximization for RIS-assisted UAV-IoT Networks using Sample Efficient SAC Technique</title><source>IEEE Xplore All Conference Series</source><creator>Adhikari, Bhagawat ; Khwaja, Ahmed Shaharyar ; Jaseemuddin, Muhammad ; Anpalagan, Alagan</creator><creatorcontrib>Adhikari, Bhagawat ; Khwaja, Ahmed Shaharyar ; Jaseemuddin, Muhammad ; Anpalagan, Alagan</creatorcontrib><description>Deep Reinforcement Learning (DRL) based algorithms have been widely adopted to solve the non-convex optimization problems in Reconfigurable Intelligent Surface (RIS)assisted Unmanned Aerial Vehicle (UAV) systems for establishing uninterrupted wireless connections with the ground Internet of Things (IoT) devices. However, model-free DRL techniques such as Deep Deterministic Policy Gradient (DDPG), Deep Q-learning (DQN) and Double Deep Q-learning (DDQN) suffer from low convergence and poor sample efficiency. Use of off-policy DRL techniques can be an appropriate solution to enhance the sample efficiency and training speed in vulnerable and fast changing environments involving multiple IoTs. In this paper, we use a novel off-policy actor-critic DRL technique called Soft ActorCritic (SAC) to solve the sum rate maximization problem in RIS-assisted UAV-IoT networks in dense urban environment. We perform simulations to compare the results of the proposed sample efficient SAC algorithm with the existing DDPG technique with and without RIS optimization. Our simulations show that SAC with optimized RIS outperforms the model-free DDPG technique in terms of maximizing the sum rate.</description><identifier>EISSN: 2768-1734</identifier><identifier>EISBN: 9798350373011</identifier><identifier>DOI: 10.1109/WF-IoT62078.2024.10811439</identifier><language>eng</language><publisher>IEEE</publisher><subject>Autonomous aerial vehicles ; Deep reinforcement learning ; Deep Reinforcement Learning (DRL) ; Internet of Things ; Optimization ; Q-learning ; Reconfigurable Intelligent Surface (RIS) ; Reconfigurable intelligent surfaces ; Soft-actor-critic (SAC) ; Training ; Trajectory ; Unmanned Aerial Vehicle (UAV) ; Urban areas ; Wireless communication</subject><ispartof>IEEE World Forum on Internet of Things, 2024, p.463-468</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10811439$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27916,54546,54923</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10811439$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Adhikari, Bhagawat</creatorcontrib><creatorcontrib>Khwaja, Ahmed Shaharyar</creatorcontrib><creatorcontrib>Jaseemuddin, Muhammad</creatorcontrib><creatorcontrib>Anpalagan, Alagan</creatorcontrib><title>Sum Rate Maximization for RIS-assisted UAV-IoT Networks using Sample Efficient SAC Technique</title><title>IEEE World Forum on Internet of Things</title><addtitle>WF-IoT</addtitle><description>Deep Reinforcement Learning (DRL) based algorithms have been widely adopted to solve the non-convex optimization problems in Reconfigurable Intelligent Surface (RIS)assisted Unmanned Aerial Vehicle (UAV) systems for establishing uninterrupted wireless connections with the ground Internet of Things (IoT) devices. However, model-free DRL techniques such as Deep Deterministic Policy Gradient (DDPG), Deep Q-learning (DQN) and Double Deep Q-learning (DDQN) suffer from low convergence and poor sample efficiency. Use of off-policy DRL techniques can be an appropriate solution to enhance the sample efficiency and training speed in vulnerable and fast changing environments involving multiple IoTs. In this paper, we use a novel off-policy actor-critic DRL technique called Soft ActorCritic (SAC) to solve the sum rate maximization problem in RIS-assisted UAV-IoT networks in dense urban environment. We perform simulations to compare the results of the proposed sample efficient SAC algorithm with the existing DDPG technique with and without RIS optimization. Our simulations show that SAC with optimized RIS outperforms the model-free DDPG technique in terms of maximizing the sum rate.</description><subject>Autonomous aerial vehicles</subject><subject>Deep reinforcement learning</subject><subject>Deep Reinforcement Learning (DRL)</subject><subject>Internet of Things</subject><subject>Optimization</subject><subject>Q-learning</subject><subject>Reconfigurable Intelligent Surface (RIS)</subject><subject>Reconfigurable intelligent surfaces</subject><subject>Soft-actor-critic (SAC)</subject><subject>Training</subject><subject>Trajectory</subject><subject>Unmanned Aerial Vehicle (UAV)</subject><subject>Urban areas</subject><subject>Wireless communication</subject><issn>2768-1734</issn><isbn>9798350373011</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFjs1OwkAURkcTE4n0DVhcH6D13k5lpktCILLABa26MSETuNWrtIXONP48vZLomtWXnLM4n1LXhAkR5jdP83jRluMUjU1STLOE0BJlOj9TUW5yq29RG41E52qQmrGNyejsUkXevyGiJvPL7EA9F30NKxcYlu5Tavl2QdoGqraD1aKInffiA2_hYfJ47ME9h4-2e_fQe2leoHD1fscwqyrZCDcBiskUSt68NnLoeaguKrfzHP3tlRrNZ-X0LhZmXu87qV33tf4_rk_oH07fRqM</recordid><startdate>20241110</startdate><enddate>20241110</enddate><creator>Adhikari, Bhagawat</creator><creator>Khwaja, Ahmed Shaharyar</creator><creator>Jaseemuddin, Muhammad</creator><creator>Anpalagan, Alagan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20241110</creationdate><title>Sum Rate Maximization for RIS-assisted UAV-IoT Networks using Sample Efficient SAC Technique</title><author>Adhikari, Bhagawat ; Khwaja, Ahmed Shaharyar ; Jaseemuddin, Muhammad ; Anpalagan, Alagan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_108114393</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Autonomous aerial vehicles</topic><topic>Deep reinforcement learning</topic><topic>Deep Reinforcement Learning (DRL)</topic><topic>Internet of Things</topic><topic>Optimization</topic><topic>Q-learning</topic><topic>Reconfigurable Intelligent Surface (RIS)</topic><topic>Reconfigurable intelligent surfaces</topic><topic>Soft-actor-critic (SAC)</topic><topic>Training</topic><topic>Trajectory</topic><topic>Unmanned Aerial Vehicle (UAV)</topic><topic>Urban areas</topic><topic>Wireless communication</topic><toplevel>online_resources</toplevel><creatorcontrib>Adhikari, Bhagawat</creatorcontrib><creatorcontrib>Khwaja, Ahmed Shaharyar</creatorcontrib><creatorcontrib>Jaseemuddin, Muhammad</creatorcontrib><creatorcontrib>Anpalagan, Alagan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Adhikari, Bhagawat</au><au>Khwaja, Ahmed Shaharyar</au><au>Jaseemuddin, Muhammad</au><au>Anpalagan, Alagan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sum Rate Maximization for RIS-assisted UAV-IoT Networks using Sample Efficient SAC Technique</atitle><btitle>IEEE World Forum on Internet of Things</btitle><stitle>WF-IoT</stitle><date>2024-11-10</date><risdate>2024</risdate><spage>463</spage><epage>468</epage><pages>463-468</pages><eissn>2768-1734</eissn><eisbn>9798350373011</eisbn><abstract>Deep Reinforcement Learning (DRL) based algorithms have been widely adopted to solve the non-convex optimization problems in Reconfigurable Intelligent Surface (RIS)assisted Unmanned Aerial Vehicle (UAV) systems for establishing uninterrupted wireless connections with the ground Internet of Things (IoT) devices. However, model-free DRL techniques such as Deep Deterministic Policy Gradient (DDPG), Deep Q-learning (DQN) and Double Deep Q-learning (DDQN) suffer from low convergence and poor sample efficiency. Use of off-policy DRL techniques can be an appropriate solution to enhance the sample efficiency and training speed in vulnerable and fast changing environments involving multiple IoTs. In this paper, we use a novel off-policy actor-critic DRL technique called Soft ActorCritic (SAC) to solve the sum rate maximization problem in RIS-assisted UAV-IoT networks in dense urban environment. We perform simulations to compare the results of the proposed sample efficient SAC algorithm with the existing DDPG technique with and without RIS optimization. Our simulations show that SAC with optimized RIS outperforms the model-free DDPG technique in terms of maximizing the sum rate.</abstract><pub>IEEE</pub><doi>10.1109/WF-IoT62078.2024.10811439</doi></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2768-1734
ispartof IEEE World Forum on Internet of Things, 2024, p.463-468
issn 2768-1734
language eng
recordid cdi_ieee_primary_10811439
source IEEE Xplore All Conference Series
subjects Autonomous aerial vehicles
Deep reinforcement learning
Deep Reinforcement Learning (DRL)
Internet of Things
Optimization
Q-learning
Reconfigurable Intelligent Surface (RIS)
Reconfigurable intelligent surfaces
Soft-actor-critic (SAC)
Training
Trajectory
Unmanned Aerial Vehicle (UAV)
Urban areas
Wireless communication
title Sum Rate Maximization for RIS-assisted UAV-IoT Networks using Sample Efficient SAC Technique
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A33%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sum%20Rate%20Maximization%20for%20RIS-assisted%20UAV-IoT%20Networks%20using%20Sample%20Efficient%20SAC%20Technique&rft.btitle=IEEE%20World%20Forum%20on%20Internet%20of%20Things&rft.au=Adhikari,%20Bhagawat&rft.date=2024-11-10&rft.spage=463&rft.epage=468&rft.pages=463-468&rft.eissn=2768-1734&rft_id=info:doi/10.1109/WF-IoT62078.2024.10811439&rft.eisbn=9798350373011&rft_dat=%3Cieee_CHZPO%3E10811439%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_108114393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10811439&rfr_iscdi=true