Loading…
Sum Rate Maximization for RIS-assisted UAV-IoT Networks using Sample Efficient SAC Technique
Deep Reinforcement Learning (DRL) based algorithms have been widely adopted to solve the non-convex optimization problems in Reconfigurable Intelligent Surface (RIS)assisted Unmanned Aerial Vehicle (UAV) systems for establishing uninterrupted wireless connections with the ground Internet of Things (...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 468 |
container_issue | |
container_start_page | 463 |
container_title | |
container_volume | |
creator | Adhikari, Bhagawat Khwaja, Ahmed Shaharyar Jaseemuddin, Muhammad Anpalagan, Alagan |
description | Deep Reinforcement Learning (DRL) based algorithms have been widely adopted to solve the non-convex optimization problems in Reconfigurable Intelligent Surface (RIS)assisted Unmanned Aerial Vehicle (UAV) systems for establishing uninterrupted wireless connections with the ground Internet of Things (IoT) devices. However, model-free DRL techniques such as Deep Deterministic Policy Gradient (DDPG), Deep Q-learning (DQN) and Double Deep Q-learning (DDQN) suffer from low convergence and poor sample efficiency. Use of off-policy DRL techniques can be an appropriate solution to enhance the sample efficiency and training speed in vulnerable and fast changing environments involving multiple IoTs. In this paper, we use a novel off-policy actor-critic DRL technique called Soft ActorCritic (SAC) to solve the sum rate maximization problem in RIS-assisted UAV-IoT networks in dense urban environment. We perform simulations to compare the results of the proposed sample efficient SAC algorithm with the existing DDPG technique with and without RIS optimization. Our simulations show that SAC with optimized RIS outperforms the model-free DDPG technique in terms of maximizing the sum rate. |
doi_str_mv | 10.1109/WF-IoT62078.2024.10811439 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10811439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10811439</ieee_id><sourcerecordid>10811439</sourcerecordid><originalsourceid>FETCH-ieee_primary_108114393</originalsourceid><addsrcrecordid>eNqFjs1OwkAURkcTE4n0DVhcH6D13k5lpktCILLABa26MSETuNWrtIXONP48vZLomtWXnLM4n1LXhAkR5jdP83jRluMUjU1STLOE0BJlOj9TUW5yq29RG41E52qQmrGNyejsUkXevyGiJvPL7EA9F30NKxcYlu5Tavl2QdoGqraD1aKInffiA2_hYfJ47ME9h4-2e_fQe2leoHD1fscwqyrZCDcBiskUSt68NnLoeaguKrfzHP3tlRrNZ-X0LhZmXu87qV33tf4_rk_oH07fRqM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Sum Rate Maximization for RIS-assisted UAV-IoT Networks using Sample Efficient SAC Technique</title><source>IEEE Xplore All Conference Series</source><creator>Adhikari, Bhagawat ; Khwaja, Ahmed Shaharyar ; Jaseemuddin, Muhammad ; Anpalagan, Alagan</creator><creatorcontrib>Adhikari, Bhagawat ; Khwaja, Ahmed Shaharyar ; Jaseemuddin, Muhammad ; Anpalagan, Alagan</creatorcontrib><description>Deep Reinforcement Learning (DRL) based algorithms have been widely adopted to solve the non-convex optimization problems in Reconfigurable Intelligent Surface (RIS)assisted Unmanned Aerial Vehicle (UAV) systems for establishing uninterrupted wireless connections with the ground Internet of Things (IoT) devices. However, model-free DRL techniques such as Deep Deterministic Policy Gradient (DDPG), Deep Q-learning (DQN) and Double Deep Q-learning (DDQN) suffer from low convergence and poor sample efficiency. Use of off-policy DRL techniques can be an appropriate solution to enhance the sample efficiency and training speed in vulnerable and fast changing environments involving multiple IoTs. In this paper, we use a novel off-policy actor-critic DRL technique called Soft ActorCritic (SAC) to solve the sum rate maximization problem in RIS-assisted UAV-IoT networks in dense urban environment. We perform simulations to compare the results of the proposed sample efficient SAC algorithm with the existing DDPG technique with and without RIS optimization. Our simulations show that SAC with optimized RIS outperforms the model-free DDPG technique in terms of maximizing the sum rate.</description><identifier>EISSN: 2768-1734</identifier><identifier>EISBN: 9798350373011</identifier><identifier>DOI: 10.1109/WF-IoT62078.2024.10811439</identifier><language>eng</language><publisher>IEEE</publisher><subject>Autonomous aerial vehicles ; Deep reinforcement learning ; Deep Reinforcement Learning (DRL) ; Internet of Things ; Optimization ; Q-learning ; Reconfigurable Intelligent Surface (RIS) ; Reconfigurable intelligent surfaces ; Soft-actor-critic (SAC) ; Training ; Trajectory ; Unmanned Aerial Vehicle (UAV) ; Urban areas ; Wireless communication</subject><ispartof>IEEE World Forum on Internet of Things, 2024, p.463-468</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10811439$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27916,54546,54923</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10811439$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Adhikari, Bhagawat</creatorcontrib><creatorcontrib>Khwaja, Ahmed Shaharyar</creatorcontrib><creatorcontrib>Jaseemuddin, Muhammad</creatorcontrib><creatorcontrib>Anpalagan, Alagan</creatorcontrib><title>Sum Rate Maximization for RIS-assisted UAV-IoT Networks using Sample Efficient SAC Technique</title><title>IEEE World Forum on Internet of Things</title><addtitle>WF-IoT</addtitle><description>Deep Reinforcement Learning (DRL) based algorithms have been widely adopted to solve the non-convex optimization problems in Reconfigurable Intelligent Surface (RIS)assisted Unmanned Aerial Vehicle (UAV) systems for establishing uninterrupted wireless connections with the ground Internet of Things (IoT) devices. However, model-free DRL techniques such as Deep Deterministic Policy Gradient (DDPG), Deep Q-learning (DQN) and Double Deep Q-learning (DDQN) suffer from low convergence and poor sample efficiency. Use of off-policy DRL techniques can be an appropriate solution to enhance the sample efficiency and training speed in vulnerable and fast changing environments involving multiple IoTs. In this paper, we use a novel off-policy actor-critic DRL technique called Soft ActorCritic (SAC) to solve the sum rate maximization problem in RIS-assisted UAV-IoT networks in dense urban environment. We perform simulations to compare the results of the proposed sample efficient SAC algorithm with the existing DDPG technique with and without RIS optimization. Our simulations show that SAC with optimized RIS outperforms the model-free DDPG technique in terms of maximizing the sum rate.</description><subject>Autonomous aerial vehicles</subject><subject>Deep reinforcement learning</subject><subject>Deep Reinforcement Learning (DRL)</subject><subject>Internet of Things</subject><subject>Optimization</subject><subject>Q-learning</subject><subject>Reconfigurable Intelligent Surface (RIS)</subject><subject>Reconfigurable intelligent surfaces</subject><subject>Soft-actor-critic (SAC)</subject><subject>Training</subject><subject>Trajectory</subject><subject>Unmanned Aerial Vehicle (UAV)</subject><subject>Urban areas</subject><subject>Wireless communication</subject><issn>2768-1734</issn><isbn>9798350373011</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFjs1OwkAURkcTE4n0DVhcH6D13k5lpktCILLABa26MSETuNWrtIXONP48vZLomtWXnLM4n1LXhAkR5jdP83jRluMUjU1STLOE0BJlOj9TUW5yq29RG41E52qQmrGNyejsUkXevyGiJvPL7EA9F30NKxcYlu5Tavl2QdoGqraD1aKInffiA2_hYfJ47ME9h4-2e_fQe2leoHD1fscwqyrZCDcBiskUSt68NnLoeaguKrfzHP3tlRrNZ-X0LhZmXu87qV33tf4_rk_oH07fRqM</recordid><startdate>20241110</startdate><enddate>20241110</enddate><creator>Adhikari, Bhagawat</creator><creator>Khwaja, Ahmed Shaharyar</creator><creator>Jaseemuddin, Muhammad</creator><creator>Anpalagan, Alagan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20241110</creationdate><title>Sum Rate Maximization for RIS-assisted UAV-IoT Networks using Sample Efficient SAC Technique</title><author>Adhikari, Bhagawat ; Khwaja, Ahmed Shaharyar ; Jaseemuddin, Muhammad ; Anpalagan, Alagan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_108114393</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Autonomous aerial vehicles</topic><topic>Deep reinforcement learning</topic><topic>Deep Reinforcement Learning (DRL)</topic><topic>Internet of Things</topic><topic>Optimization</topic><topic>Q-learning</topic><topic>Reconfigurable Intelligent Surface (RIS)</topic><topic>Reconfigurable intelligent surfaces</topic><topic>Soft-actor-critic (SAC)</topic><topic>Training</topic><topic>Trajectory</topic><topic>Unmanned Aerial Vehicle (UAV)</topic><topic>Urban areas</topic><topic>Wireless communication</topic><toplevel>online_resources</toplevel><creatorcontrib>Adhikari, Bhagawat</creatorcontrib><creatorcontrib>Khwaja, Ahmed Shaharyar</creatorcontrib><creatorcontrib>Jaseemuddin, Muhammad</creatorcontrib><creatorcontrib>Anpalagan, Alagan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Adhikari, Bhagawat</au><au>Khwaja, Ahmed Shaharyar</au><au>Jaseemuddin, Muhammad</au><au>Anpalagan, Alagan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sum Rate Maximization for RIS-assisted UAV-IoT Networks using Sample Efficient SAC Technique</atitle><btitle>IEEE World Forum on Internet of Things</btitle><stitle>WF-IoT</stitle><date>2024-11-10</date><risdate>2024</risdate><spage>463</spage><epage>468</epage><pages>463-468</pages><eissn>2768-1734</eissn><eisbn>9798350373011</eisbn><abstract>Deep Reinforcement Learning (DRL) based algorithms have been widely adopted to solve the non-convex optimization problems in Reconfigurable Intelligent Surface (RIS)assisted Unmanned Aerial Vehicle (UAV) systems for establishing uninterrupted wireless connections with the ground Internet of Things (IoT) devices. However, model-free DRL techniques such as Deep Deterministic Policy Gradient (DDPG), Deep Q-learning (DQN) and Double Deep Q-learning (DDQN) suffer from low convergence and poor sample efficiency. Use of off-policy DRL techniques can be an appropriate solution to enhance the sample efficiency and training speed in vulnerable and fast changing environments involving multiple IoTs. In this paper, we use a novel off-policy actor-critic DRL technique called Soft ActorCritic (SAC) to solve the sum rate maximization problem in RIS-assisted UAV-IoT networks in dense urban environment. We perform simulations to compare the results of the proposed sample efficient SAC algorithm with the existing DDPG technique with and without RIS optimization. Our simulations show that SAC with optimized RIS outperforms the model-free DDPG technique in terms of maximizing the sum rate.</abstract><pub>IEEE</pub><doi>10.1109/WF-IoT62078.2024.10811439</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2768-1734 |
ispartof | IEEE World Forum on Internet of Things, 2024, p.463-468 |
issn | 2768-1734 |
language | eng |
recordid | cdi_ieee_primary_10811439 |
source | IEEE Xplore All Conference Series |
subjects | Autonomous aerial vehicles Deep reinforcement learning Deep Reinforcement Learning (DRL) Internet of Things Optimization Q-learning Reconfigurable Intelligent Surface (RIS) Reconfigurable intelligent surfaces Soft-actor-critic (SAC) Training Trajectory Unmanned Aerial Vehicle (UAV) Urban areas Wireless communication |
title | Sum Rate Maximization for RIS-assisted UAV-IoT Networks using Sample Efficient SAC Technique |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A33%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sum%20Rate%20Maximization%20for%20RIS-assisted%20UAV-IoT%20Networks%20using%20Sample%20Efficient%20SAC%20Technique&rft.btitle=IEEE%20World%20Forum%20on%20Internet%20of%20Things&rft.au=Adhikari,%20Bhagawat&rft.date=2024-11-10&rft.spage=463&rft.epage=468&rft.pages=463-468&rft.eissn=2768-1734&rft_id=info:doi/10.1109/WF-IoT62078.2024.10811439&rft.eisbn=9798350373011&rft_dat=%3Cieee_CHZPO%3E10811439%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_108114393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10811439&rfr_iscdi=true |