Loading…

EEG Emotion Recognition via a Lightweight 1DCNN-BiLSTM Model in Resource-Limited Environments

In the application of wearable medical monitoring devices, EEG emotion recognition tasks need to be implemented in resource-constrained environments. Therefore, the proposed lightweight 1DCNN-BiLSTM network aims to achieve comparable emotion recognition accuracy to existing models while significantl...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2025, p.1-1
Main Authors: Liu, Haipeng, Zhang, Shaolin, Shi, Jiangyi, Liu, Hongjin, Zhang, Yuming, Wu, Wenhao, Li, Bin
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1
container_issue
container_start_page 1
container_title IEEE sensors journal
container_volume
creator Liu, Haipeng
Zhang, Shaolin
Shi, Jiangyi
Liu, Hongjin
Zhang, Yuming
Wu, Wenhao
Li, Bin
description In the application of wearable medical monitoring devices, EEG emotion recognition tasks need to be implemented in resource-constrained environments. Therefore, the proposed lightweight 1DCNN-BiLSTM network aims to achieve comparable emotion recognition accuracy to existing models while significantly reducing computational costs and memory usage on resource-constrained devices. First, a low computational cost preprocessing method is used to eliminate the interference of baseline signals in the raw EEG signal. Second, a shallow hybrid network of 1DCNN-BiLSTM is proposed to extract spatial features between different channels and temporal forward-backward features in EEG signals. Finally, quantize the trained model to reduce memory consumption and replace floating-point operations with fixed-point operations. Experiments on DEAP and DREAMER datasets achieve more than 90% recognition accuracy. The memory usage of the quantized network is 17.4 KB, and the computation for a single classification is 1.7 MFLOPs. The model is ultimately deployed on an embedded processor, attaining an inference speed of 352.51 milliseconds, thereby enabling emotion recognition within resource-constrained environments.
doi_str_mv 10.1109/JSEN.2024.3514094
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10812798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10812798</ieee_id><sourcerecordid>10_1109_JSEN_2024_3514094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c638-f09746a64530e09b224029d0b160b1496eba0d1c1be6a22401bb23bc7e0e3fe13</originalsourceid><addsrcrecordid>eNpNkMFOwzAMhiMEEmPwAEgc8gIZcZI2zRFGGaBuSGwHLqhKW3cErQ1qyhBvz8p24GD7l-z_l_URcgl8AsDN9dMyXUwEF2oiI1DcqCMygihKGGiVHA9acqakfj0lZyF8cA5GR3pE3tJ0RtPG98639AVLv27dn946Sy3N3Pq9_8ahU7ibLhbs1mXL1ZzOfYUb6gZP8F9diSxzjeuxomm7dZ1vG2z7cE5OarsJeHGYY7K6T1fTB5Y9zx6nNxkrY5mwmhutYhur3Y_ITSGE4sJUvIB4V8rEWFheQQkFxnZYQlEIWZQaOcoaQY4J7GPLzofQYZ1_dq6x3U8OPB_w5AOefMCTH_DsPFd7j0PEf_cJCG0S-QsiUmB3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>EEG Emotion Recognition via a Lightweight 1DCNN-BiLSTM Model in Resource-Limited Environments</title><source>IEEE Xplore (Online service)</source><creator>Liu, Haipeng ; Zhang, Shaolin ; Shi, Jiangyi ; Liu, Hongjin ; Zhang, Yuming ; Wu, Wenhao ; Li, Bin</creator><creatorcontrib>Liu, Haipeng ; Zhang, Shaolin ; Shi, Jiangyi ; Liu, Hongjin ; Zhang, Yuming ; Wu, Wenhao ; Li, Bin</creatorcontrib><description>In the application of wearable medical monitoring devices, EEG emotion recognition tasks need to be implemented in resource-constrained environments. Therefore, the proposed lightweight 1DCNN-BiLSTM network aims to achieve comparable emotion recognition accuracy to existing models while significantly reducing computational costs and memory usage on resource-constrained devices. First, a low computational cost preprocessing method is used to eliminate the interference of baseline signals in the raw EEG signal. Second, a shallow hybrid network of 1DCNN-BiLSTM is proposed to extract spatial features between different channels and temporal forward-backward features in EEG signals. Finally, quantize the trained model to reduce memory consumption and replace floating-point operations with fixed-point operations. Experiments on DEAP and DREAMER datasets achieve more than 90% recognition accuracy. The memory usage of the quantized network is 17.4 KB, and the computation for a single classification is 1.7 MFLOPs. The model is ultimately deployed on an embedded processor, attaining an inference speed of 352.51 milliseconds, thereby enabling emotion recognition within resource-constrained environments.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3514094</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Bidirectional long short term memory ; Brain modeling ; Computational modeling ; Convolution ; convolutional neural network ; electroencephalogram(EEG) ; Electroencephalography ; Emotion recognition ; Feature extraction ; lightweight ; Logic gates ; Sensors</subject><ispartof>IEEE sensors journal, 2025, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8465-9528 ; 0009-0001-6641-5204 ; 0000-0002-8587-0747</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10812798$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,4009,27902,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Liu, Haipeng</creatorcontrib><creatorcontrib>Zhang, Shaolin</creatorcontrib><creatorcontrib>Shi, Jiangyi</creatorcontrib><creatorcontrib>Liu, Hongjin</creatorcontrib><creatorcontrib>Zhang, Yuming</creatorcontrib><creatorcontrib>Wu, Wenhao</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><title>EEG Emotion Recognition via a Lightweight 1DCNN-BiLSTM Model in Resource-Limited Environments</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>In the application of wearable medical monitoring devices, EEG emotion recognition tasks need to be implemented in resource-constrained environments. Therefore, the proposed lightweight 1DCNN-BiLSTM network aims to achieve comparable emotion recognition accuracy to existing models while significantly reducing computational costs and memory usage on resource-constrained devices. First, a low computational cost preprocessing method is used to eliminate the interference of baseline signals in the raw EEG signal. Second, a shallow hybrid network of 1DCNN-BiLSTM is proposed to extract spatial features between different channels and temporal forward-backward features in EEG signals. Finally, quantize the trained model to reduce memory consumption and replace floating-point operations with fixed-point operations. Experiments on DEAP and DREAMER datasets achieve more than 90% recognition accuracy. The memory usage of the quantized network is 17.4 KB, and the computation for a single classification is 1.7 MFLOPs. The model is ultimately deployed on an embedded processor, attaining an inference speed of 352.51 milliseconds, thereby enabling emotion recognition within resource-constrained environments.</description><subject>Accuracy</subject><subject>Bidirectional long short term memory</subject><subject>Brain modeling</subject><subject>Computational modeling</subject><subject>Convolution</subject><subject>convolutional neural network</subject><subject>electroencephalogram(EEG)</subject><subject>Electroencephalography</subject><subject>Emotion recognition</subject><subject>Feature extraction</subject><subject>lightweight</subject><subject>Logic gates</subject><subject>Sensors</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpNkMFOwzAMhiMEEmPwAEgc8gIZcZI2zRFGGaBuSGwHLqhKW3cErQ1qyhBvz8p24GD7l-z_l_URcgl8AsDN9dMyXUwEF2oiI1DcqCMygihKGGiVHA9acqakfj0lZyF8cA5GR3pE3tJ0RtPG98639AVLv27dn946Sy3N3Pq9_8ahU7ibLhbs1mXL1ZzOfYUb6gZP8F9diSxzjeuxomm7dZ1vG2z7cE5OarsJeHGYY7K6T1fTB5Y9zx6nNxkrY5mwmhutYhur3Y_ITSGE4sJUvIB4V8rEWFheQQkFxnZYQlEIWZQaOcoaQY4J7GPLzofQYZ1_dq6x3U8OPB_w5AOefMCTH_DsPFd7j0PEf_cJCG0S-QsiUmB3</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Liu, Haipeng</creator><creator>Zhang, Shaolin</creator><creator>Shi, Jiangyi</creator><creator>Liu, Hongjin</creator><creator>Zhang, Yuming</creator><creator>Wu, Wenhao</creator><creator>Li, Bin</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8465-9528</orcidid><orcidid>https://orcid.org/0009-0001-6641-5204</orcidid><orcidid>https://orcid.org/0000-0002-8587-0747</orcidid></search><sort><creationdate>2025</creationdate><title>EEG Emotion Recognition via a Lightweight 1DCNN-BiLSTM Model in Resource-Limited Environments</title><author>Liu, Haipeng ; Zhang, Shaolin ; Shi, Jiangyi ; Liu, Hongjin ; Zhang, Yuming ; Wu, Wenhao ; Li, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c638-f09746a64530e09b224029d0b160b1496eba0d1c1be6a22401bb23bc7e0e3fe13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Accuracy</topic><topic>Bidirectional long short term memory</topic><topic>Brain modeling</topic><topic>Computational modeling</topic><topic>Convolution</topic><topic>convolutional neural network</topic><topic>electroencephalogram(EEG)</topic><topic>Electroencephalography</topic><topic>Emotion recognition</topic><topic>Feature extraction</topic><topic>lightweight</topic><topic>Logic gates</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Haipeng</creatorcontrib><creatorcontrib>Zhang, Shaolin</creatorcontrib><creatorcontrib>Shi, Jiangyi</creatorcontrib><creatorcontrib>Liu, Hongjin</creatorcontrib><creatorcontrib>Zhang, Yuming</creatorcontrib><creatorcontrib>Wu, Wenhao</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Haipeng</au><au>Zhang, Shaolin</au><au>Shi, Jiangyi</au><au>Liu, Hongjin</au><au>Zhang, Yuming</au><au>Wu, Wenhao</au><au>Li, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EEG Emotion Recognition via a Lightweight 1DCNN-BiLSTM Model in Resource-Limited Environments</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2025</date><risdate>2025</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>In the application of wearable medical monitoring devices, EEG emotion recognition tasks need to be implemented in resource-constrained environments. Therefore, the proposed lightweight 1DCNN-BiLSTM network aims to achieve comparable emotion recognition accuracy to existing models while significantly reducing computational costs and memory usage on resource-constrained devices. First, a low computational cost preprocessing method is used to eliminate the interference of baseline signals in the raw EEG signal. Second, a shallow hybrid network of 1DCNN-BiLSTM is proposed to extract spatial features between different channels and temporal forward-backward features in EEG signals. Finally, quantize the trained model to reduce memory consumption and replace floating-point operations with fixed-point operations. Experiments on DEAP and DREAMER datasets achieve more than 90% recognition accuracy. The memory usage of the quantized network is 17.4 KB, and the computation for a single classification is 1.7 MFLOPs. The model is ultimately deployed on an embedded processor, attaining an inference speed of 352.51 milliseconds, thereby enabling emotion recognition within resource-constrained environments.</abstract><pub>IEEE</pub><doi>10.1109/JSEN.2024.3514094</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8465-9528</orcidid><orcidid>https://orcid.org/0009-0001-6641-5204</orcidid><orcidid>https://orcid.org/0000-0002-8587-0747</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2025, p.1-1
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_10812798
source IEEE Xplore (Online service)
subjects Accuracy
Bidirectional long short term memory
Brain modeling
Computational modeling
Convolution
convolutional neural network
electroencephalogram(EEG)
Electroencephalography
Emotion recognition
Feature extraction
lightweight
Logic gates
Sensors
title EEG Emotion Recognition via a Lightweight 1DCNN-BiLSTM Model in Resource-Limited Environments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A39%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EEG%20Emotion%20Recognition%20via%20a%20Lightweight%201DCNN-BiLSTM%20Model%20in%20Resource-Limited%20Environments&rft.jtitle=IEEE%20sensors%20journal&rft.au=Liu,%20Haipeng&rft.date=2025&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3514094&rft_dat=%3Ccrossref_ieee_%3E10_1109_JSEN_2024_3514094%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c638-f09746a64530e09b224029d0b160b1496eba0d1c1be6a22401bb23bc7e0e3fe13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10812798&rfr_iscdi=true