Loading…
MRI Motion Correction Through Disentangled CycleGAN Based on Multi-Mask K-Space Subsampling
This work proposes a new retrospective motion correction method, termed DCGAN-MS, which employs disentangled CycleGAN based onmulti-mask k-space subsampling (DCGAN-MS) to address the image domain translation challenge. The multi-mask k-space subsampling operator is utilized to decrease the complexit...
Saved in:
Published in: | IEEE transactions on medical imaging 2025, p.1-1 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on medical imaging |
container_volume | |
creator | Chen, Gang Xie, Han Rao, Xinglong Liu, Xinjie Otikovs, Martins Frydman, Lucio Sun, Peng Zhang, Zhi Pan, Feng Yang, Lian Zhou, Xin Liu, Maili Bao, Qingjia Liu, Chaoyang |
description | This work proposes a new retrospective motion correction method, termed DCGAN-MS, which employs disentangled CycleGAN based onmulti-mask k-space subsampling (DCGAN-MS) to address the image domain translation challenge. The multi-mask k-space subsampling operator is utilized to decrease the complexity of motion artifacts by randomly discarding motion-affected k-space lines. The network then disentangles the subsampled, motion-corrupted images into content and artifact features using specialized encoders, and generates motion-corrected images by decoding the content features. By utilizing multi-mask k-space subsampling, motion artifact features become more sparse compared to the original image domain, enhancing the efficiency of the DCGAN-MS network. This method effectively corrects motion artifacts in clinical gadoxetic acid-enhanced human liver MRI, human brain MRI from fastMRI, and preclinical rodent brain MRI. Quantitative improvements are demonstrated with SSIM values increasing from 0.75 to 0.86 for human liver MRI with simulated motion artifacts, and from 0.72 to 0.82 for rodent brain MRI with simulated motion artifacts. Correspondingly, PSNR values increased from 26.09 to 31.09 and from 25.10 to 31.77. The method's performance was further validated on clinical and preclinical motion-corrupted MRI using the Kernel Inception Distance (KID) and Fréchet Inception Distance (FID) metrics. Additionally, ablation experiments were conducted to confirm the effectiveness of the multi-mask k-space subsampling approach. |
doi_str_mv | 10.1109/TMI.2024.3523949 |
format | article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10818568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10818568</ieee_id><sourcerecordid>10_1109_TMI_2024_3523949</sourcerecordid><originalsourceid>FETCH-LOGICAL-c628-3a1f53ab0c9e8013ee2440d71b1f70e07624bffbec76ef22be7db0da9267ceea3</originalsourceid><addsrcrecordid>eNpNkD1PwzAYhC0EEqWwMzDkD7i8_kicjCVAqWhAohmQGCLbed0G0qSK06H_npR2YLo76e6Gh5BbBhPGILnPs_mEA5cTEXKRyOSMjFgYxpSH8vOcjICrmAJE_JJcef8NwGQIyYh8ZR_zIGv7qm2CtO06tH82X3ftbrUOHiuPTa-bVY1lkO5tjbPpW_Cg_RCHWrar-4pm2v8Er3S51RaD5c54vdnWVbO6JhdO1x5vTjom-fNTnr7Qxftsnk4X1EY8pkIzFwptwCYYAxOIXEooFTPMKUBQEZfGOYNWReg4N6hKA6VOeKQsohZjAsdb27Xed-iKbVdtdLcvGBQHNsXApjiwKU5shsndcVIh4r96zOIwisUvh7hg6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>MRI Motion Correction Through Disentangled CycleGAN Based on Multi-Mask K-Space Subsampling</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Chen, Gang ; Xie, Han ; Rao, Xinglong ; Liu, Xinjie ; Otikovs, Martins ; Frydman, Lucio ; Sun, Peng ; Zhang, Zhi ; Pan, Feng ; Yang, Lian ; Zhou, Xin ; Liu, Maili ; Bao, Qingjia ; Liu, Chaoyang</creator><creatorcontrib>Chen, Gang ; Xie, Han ; Rao, Xinglong ; Liu, Xinjie ; Otikovs, Martins ; Frydman, Lucio ; Sun, Peng ; Zhang, Zhi ; Pan, Feng ; Yang, Lian ; Zhou, Xin ; Liu, Maili ; Bao, Qingjia ; Liu, Chaoyang</creatorcontrib><description>This work proposes a new retrospective motion correction method, termed DCGAN-MS, which employs disentangled CycleGAN based onmulti-mask k-space subsampling (DCGAN-MS) to address the image domain translation challenge. The multi-mask k-space subsampling operator is utilized to decrease the complexity of motion artifacts by randomly discarding motion-affected k-space lines. The network then disentangles the subsampled, motion-corrupted images into content and artifact features using specialized encoders, and generates motion-corrected images by decoding the content features. By utilizing multi-mask k-space subsampling, motion artifact features become more sparse compared to the original image domain, enhancing the efficiency of the DCGAN-MS network. This method effectively corrects motion artifacts in clinical gadoxetic acid-enhanced human liver MRI, human brain MRI from fastMRI, and preclinical rodent brain MRI. Quantitative improvements are demonstrated with SSIM values increasing from 0.75 to 0.86 for human liver MRI with simulated motion artifacts, and from 0.72 to 0.82 for rodent brain MRI with simulated motion artifacts. Correspondingly, PSNR values increased from 26.09 to 31.09 and from 25.10 to 31.77. The method's performance was further validated on clinical and preclinical motion-corrupted MRI using the Kernel Inception Distance (KID) and Fréchet Inception Distance (FID) metrics. Additionally, ablation experiments were conducted to confirm the effectiveness of the multi-mask k-space subsampling approach.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2024.3523949</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>IEEE</publisher><subject>Atomic measurements ; CycleGAN ; Gadoxetic acid-enhanced human liver MRI ; Generators ; Image reconstruction ; Liver ; Magnetic resonance imaging ; motion artifact ; Motion artifacts ; multi-mask k-space subsampling ; Rodents ; Technological innovation ; Transient analysis ; Translation ; unpaired learning</subject><ispartof>IEEE transactions on medical imaging, 2025, p.1-1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5580-7907 ; 0000-0003-0940-2535 ; 0000-0001-8208-3521</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10818568$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,4010,27900,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Xie, Han</creatorcontrib><creatorcontrib>Rao, Xinglong</creatorcontrib><creatorcontrib>Liu, Xinjie</creatorcontrib><creatorcontrib>Otikovs, Martins</creatorcontrib><creatorcontrib>Frydman, Lucio</creatorcontrib><creatorcontrib>Sun, Peng</creatorcontrib><creatorcontrib>Zhang, Zhi</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><creatorcontrib>Yang, Lian</creatorcontrib><creatorcontrib>Zhou, Xin</creatorcontrib><creatorcontrib>Liu, Maili</creatorcontrib><creatorcontrib>Bao, Qingjia</creatorcontrib><creatorcontrib>Liu, Chaoyang</creatorcontrib><title>MRI Motion Correction Through Disentangled CycleGAN Based on Multi-Mask K-Space Subsampling</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><description>This work proposes a new retrospective motion correction method, termed DCGAN-MS, which employs disentangled CycleGAN based onmulti-mask k-space subsampling (DCGAN-MS) to address the image domain translation challenge. The multi-mask k-space subsampling operator is utilized to decrease the complexity of motion artifacts by randomly discarding motion-affected k-space lines. The network then disentangles the subsampled, motion-corrupted images into content and artifact features using specialized encoders, and generates motion-corrected images by decoding the content features. By utilizing multi-mask k-space subsampling, motion artifact features become more sparse compared to the original image domain, enhancing the efficiency of the DCGAN-MS network. This method effectively corrects motion artifacts in clinical gadoxetic acid-enhanced human liver MRI, human brain MRI from fastMRI, and preclinical rodent brain MRI. Quantitative improvements are demonstrated with SSIM values increasing from 0.75 to 0.86 for human liver MRI with simulated motion artifacts, and from 0.72 to 0.82 for rodent brain MRI with simulated motion artifacts. Correspondingly, PSNR values increased from 26.09 to 31.09 and from 25.10 to 31.77. The method's performance was further validated on clinical and preclinical motion-corrupted MRI using the Kernel Inception Distance (KID) and Fréchet Inception Distance (FID) metrics. Additionally, ablation experiments were conducted to confirm the effectiveness of the multi-mask k-space subsampling approach.</description><subject>Atomic measurements</subject><subject>CycleGAN</subject><subject>Gadoxetic acid-enhanced human liver MRI</subject><subject>Generators</subject><subject>Image reconstruction</subject><subject>Liver</subject><subject>Magnetic resonance imaging</subject><subject>motion artifact</subject><subject>Motion artifacts</subject><subject>multi-mask k-space subsampling</subject><subject>Rodents</subject><subject>Technological innovation</subject><subject>Transient analysis</subject><subject>Translation</subject><subject>unpaired learning</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpNkD1PwzAYhC0EEqWwMzDkD7i8_kicjCVAqWhAohmQGCLbed0G0qSK06H_npR2YLo76e6Gh5BbBhPGILnPs_mEA5cTEXKRyOSMjFgYxpSH8vOcjICrmAJE_JJcef8NwGQIyYh8ZR_zIGv7qm2CtO06tH82X3ftbrUOHiuPTa-bVY1lkO5tjbPpW_Cg_RCHWrar-4pm2v8Er3S51RaD5c54vdnWVbO6JhdO1x5vTjom-fNTnr7Qxftsnk4X1EY8pkIzFwptwCYYAxOIXEooFTPMKUBQEZfGOYNWReg4N6hKA6VOeKQsohZjAsdb27Xed-iKbVdtdLcvGBQHNsXApjiwKU5shsndcVIh4r96zOIwisUvh7hg6A</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Chen, Gang</creator><creator>Xie, Han</creator><creator>Rao, Xinglong</creator><creator>Liu, Xinjie</creator><creator>Otikovs, Martins</creator><creator>Frydman, Lucio</creator><creator>Sun, Peng</creator><creator>Zhang, Zhi</creator><creator>Pan, Feng</creator><creator>Yang, Lian</creator><creator>Zhou, Xin</creator><creator>Liu, Maili</creator><creator>Bao, Qingjia</creator><creator>Liu, Chaoyang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5580-7907</orcidid><orcidid>https://orcid.org/0000-0003-0940-2535</orcidid><orcidid>https://orcid.org/0000-0001-8208-3521</orcidid></search><sort><creationdate>2025</creationdate><title>MRI Motion Correction Through Disentangled CycleGAN Based on Multi-Mask K-Space Subsampling</title><author>Chen, Gang ; Xie, Han ; Rao, Xinglong ; Liu, Xinjie ; Otikovs, Martins ; Frydman, Lucio ; Sun, Peng ; Zhang, Zhi ; Pan, Feng ; Yang, Lian ; Zhou, Xin ; Liu, Maili ; Bao, Qingjia ; Liu, Chaoyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c628-3a1f53ab0c9e8013ee2440d71b1f70e07624bffbec76ef22be7db0da9267ceea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Atomic measurements</topic><topic>CycleGAN</topic><topic>Gadoxetic acid-enhanced human liver MRI</topic><topic>Generators</topic><topic>Image reconstruction</topic><topic>Liver</topic><topic>Magnetic resonance imaging</topic><topic>motion artifact</topic><topic>Motion artifacts</topic><topic>multi-mask k-space subsampling</topic><topic>Rodents</topic><topic>Technological innovation</topic><topic>Transient analysis</topic><topic>Translation</topic><topic>unpaired learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Xie, Han</creatorcontrib><creatorcontrib>Rao, Xinglong</creatorcontrib><creatorcontrib>Liu, Xinjie</creatorcontrib><creatorcontrib>Otikovs, Martins</creatorcontrib><creatorcontrib>Frydman, Lucio</creatorcontrib><creatorcontrib>Sun, Peng</creatorcontrib><creatorcontrib>Zhang, Zhi</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><creatorcontrib>Yang, Lian</creatorcontrib><creatorcontrib>Zhou, Xin</creatorcontrib><creatorcontrib>Liu, Maili</creatorcontrib><creatorcontrib>Bao, Qingjia</creatorcontrib><creatorcontrib>Liu, Chaoyang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Gang</au><au>Xie, Han</au><au>Rao, Xinglong</au><au>Liu, Xinjie</au><au>Otikovs, Martins</au><au>Frydman, Lucio</au><au>Sun, Peng</au><au>Zhang, Zhi</au><au>Pan, Feng</au><au>Yang, Lian</au><au>Zhou, Xin</au><au>Liu, Maili</au><au>Bao, Qingjia</au><au>Liu, Chaoyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MRI Motion Correction Through Disentangled CycleGAN Based on Multi-Mask K-Space Subsampling</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><date>2025</date><risdate>2025</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>This work proposes a new retrospective motion correction method, termed DCGAN-MS, which employs disentangled CycleGAN based onmulti-mask k-space subsampling (DCGAN-MS) to address the image domain translation challenge. The multi-mask k-space subsampling operator is utilized to decrease the complexity of motion artifacts by randomly discarding motion-affected k-space lines. The network then disentangles the subsampled, motion-corrupted images into content and artifact features using specialized encoders, and generates motion-corrected images by decoding the content features. By utilizing multi-mask k-space subsampling, motion artifact features become more sparse compared to the original image domain, enhancing the efficiency of the DCGAN-MS network. This method effectively corrects motion artifacts in clinical gadoxetic acid-enhanced human liver MRI, human brain MRI from fastMRI, and preclinical rodent brain MRI. Quantitative improvements are demonstrated with SSIM values increasing from 0.75 to 0.86 for human liver MRI with simulated motion artifacts, and from 0.72 to 0.82 for rodent brain MRI with simulated motion artifacts. Correspondingly, PSNR values increased from 26.09 to 31.09 and from 25.10 to 31.77. The method's performance was further validated on clinical and preclinical motion-corrupted MRI using the Kernel Inception Distance (KID) and Fréchet Inception Distance (FID) metrics. Additionally, ablation experiments were conducted to confirm the effectiveness of the multi-mask k-space subsampling approach.</abstract><pub>IEEE</pub><doi>10.1109/TMI.2024.3523949</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5580-7907</orcidid><orcidid>https://orcid.org/0000-0003-0940-2535</orcidid><orcidid>https://orcid.org/0000-0001-8208-3521</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2025, p.1-1 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_ieee_primary_10818568 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Atomic measurements CycleGAN Gadoxetic acid-enhanced human liver MRI Generators Image reconstruction Liver Magnetic resonance imaging motion artifact Motion artifacts multi-mask k-space subsampling Rodents Technological innovation Transient analysis Translation unpaired learning |
title | MRI Motion Correction Through Disentangled CycleGAN Based on Multi-Mask K-Space Subsampling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A17%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MRI%20Motion%20Correction%20Through%20Disentangled%20CycleGAN%20Based%20on%20Multi-Mask%20K-Space%20Subsampling&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Chen,%20Gang&rft.date=2025&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2024.3523949&rft_dat=%3Ccrossref_ieee_%3E10_1109_TMI_2024_3523949%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c628-3a1f53ab0c9e8013ee2440d71b1f70e07624bffbec76ef22be7db0da9267ceea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10818568&rfr_iscdi=true |