Loading…

MRI Motion Correction Through Disentangled CycleGAN Based on Multi-Mask K-Space Subsampling

This work proposes a new retrospective motion correction method, termed DCGAN-MS, which employs disentangled CycleGAN based onmulti-mask k-space subsampling (DCGAN-MS) to address the image domain translation challenge. The multi-mask k-space subsampling operator is utilized to decrease the complexit...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging 2025, p.1-1
Main Authors: Chen, Gang, Xie, Han, Rao, Xinglong, Liu, Xinjie, Otikovs, Martins, Frydman, Lucio, Sun, Peng, Zhang, Zhi, Pan, Feng, Yang, Lian, Zhou, Xin, Liu, Maili, Bao, Qingjia, Liu, Chaoyang
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on medical imaging
container_volume
creator Chen, Gang
Xie, Han
Rao, Xinglong
Liu, Xinjie
Otikovs, Martins
Frydman, Lucio
Sun, Peng
Zhang, Zhi
Pan, Feng
Yang, Lian
Zhou, Xin
Liu, Maili
Bao, Qingjia
Liu, Chaoyang
description This work proposes a new retrospective motion correction method, termed DCGAN-MS, which employs disentangled CycleGAN based onmulti-mask k-space subsampling (DCGAN-MS) to address the image domain translation challenge. The multi-mask k-space subsampling operator is utilized to decrease the complexity of motion artifacts by randomly discarding motion-affected k-space lines. The network then disentangles the subsampled, motion-corrupted images into content and artifact features using specialized encoders, and generates motion-corrected images by decoding the content features. By utilizing multi-mask k-space subsampling, motion artifact features become more sparse compared to the original image domain, enhancing the efficiency of the DCGAN-MS network. This method effectively corrects motion artifacts in clinical gadoxetic acid-enhanced human liver MRI, human brain MRI from fastMRI, and preclinical rodent brain MRI. Quantitative improvements are demonstrated with SSIM values increasing from 0.75 to 0.86 for human liver MRI with simulated motion artifacts, and from 0.72 to 0.82 for rodent brain MRI with simulated motion artifacts. Correspondingly, PSNR values increased from 26.09 to 31.09 and from 25.10 to 31.77. The method's performance was further validated on clinical and preclinical motion-corrupted MRI using the Kernel Inception Distance (KID) and Fréchet Inception Distance (FID) metrics. Additionally, ablation experiments were conducted to confirm the effectiveness of the multi-mask k-space subsampling approach.
doi_str_mv 10.1109/TMI.2024.3523949
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10818568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10818568</ieee_id><sourcerecordid>10_1109_TMI_2024_3523949</sourcerecordid><originalsourceid>FETCH-LOGICAL-c628-3a1f53ab0c9e8013ee2440d71b1f70e07624bffbec76ef22be7db0da9267ceea3</originalsourceid><addsrcrecordid>eNpNkD1PwzAYhC0EEqWwMzDkD7i8_kicjCVAqWhAohmQGCLbed0G0qSK06H_npR2YLo76e6Gh5BbBhPGILnPs_mEA5cTEXKRyOSMjFgYxpSH8vOcjICrmAJE_JJcef8NwGQIyYh8ZR_zIGv7qm2CtO06tH82X3ftbrUOHiuPTa-bVY1lkO5tjbPpW_Cg_RCHWrar-4pm2v8Er3S51RaD5c54vdnWVbO6JhdO1x5vTjom-fNTnr7Qxftsnk4X1EY8pkIzFwptwCYYAxOIXEooFTPMKUBQEZfGOYNWReg4N6hKA6VOeKQsohZjAsdb27Xed-iKbVdtdLcvGBQHNsXApjiwKU5shsndcVIh4r96zOIwisUvh7hg6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>MRI Motion Correction Through Disentangled CycleGAN Based on Multi-Mask K-Space Subsampling</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Chen, Gang ; Xie, Han ; Rao, Xinglong ; Liu, Xinjie ; Otikovs, Martins ; Frydman, Lucio ; Sun, Peng ; Zhang, Zhi ; Pan, Feng ; Yang, Lian ; Zhou, Xin ; Liu, Maili ; Bao, Qingjia ; Liu, Chaoyang</creator><creatorcontrib>Chen, Gang ; Xie, Han ; Rao, Xinglong ; Liu, Xinjie ; Otikovs, Martins ; Frydman, Lucio ; Sun, Peng ; Zhang, Zhi ; Pan, Feng ; Yang, Lian ; Zhou, Xin ; Liu, Maili ; Bao, Qingjia ; Liu, Chaoyang</creatorcontrib><description>This work proposes a new retrospective motion correction method, termed DCGAN-MS, which employs disentangled CycleGAN based onmulti-mask k-space subsampling (DCGAN-MS) to address the image domain translation challenge. The multi-mask k-space subsampling operator is utilized to decrease the complexity of motion artifacts by randomly discarding motion-affected k-space lines. The network then disentangles the subsampled, motion-corrupted images into content and artifact features using specialized encoders, and generates motion-corrected images by decoding the content features. By utilizing multi-mask k-space subsampling, motion artifact features become more sparse compared to the original image domain, enhancing the efficiency of the DCGAN-MS network. This method effectively corrects motion artifacts in clinical gadoxetic acid-enhanced human liver MRI, human brain MRI from fastMRI, and preclinical rodent brain MRI. Quantitative improvements are demonstrated with SSIM values increasing from 0.75 to 0.86 for human liver MRI with simulated motion artifacts, and from 0.72 to 0.82 for rodent brain MRI with simulated motion artifacts. Correspondingly, PSNR values increased from 26.09 to 31.09 and from 25.10 to 31.77. The method's performance was further validated on clinical and preclinical motion-corrupted MRI using the Kernel Inception Distance (KID) and Fréchet Inception Distance (FID) metrics. Additionally, ablation experiments were conducted to confirm the effectiveness of the multi-mask k-space subsampling approach.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2024.3523949</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>IEEE</publisher><subject>Atomic measurements ; CycleGAN ; Gadoxetic acid-enhanced human liver MRI ; Generators ; Image reconstruction ; Liver ; Magnetic resonance imaging ; motion artifact ; Motion artifacts ; multi-mask k-space subsampling ; Rodents ; Technological innovation ; Transient analysis ; Translation ; unpaired learning</subject><ispartof>IEEE transactions on medical imaging, 2025, p.1-1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5580-7907 ; 0000-0003-0940-2535 ; 0000-0001-8208-3521</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10818568$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,4010,27900,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Xie, Han</creatorcontrib><creatorcontrib>Rao, Xinglong</creatorcontrib><creatorcontrib>Liu, Xinjie</creatorcontrib><creatorcontrib>Otikovs, Martins</creatorcontrib><creatorcontrib>Frydman, Lucio</creatorcontrib><creatorcontrib>Sun, Peng</creatorcontrib><creatorcontrib>Zhang, Zhi</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><creatorcontrib>Yang, Lian</creatorcontrib><creatorcontrib>Zhou, Xin</creatorcontrib><creatorcontrib>Liu, Maili</creatorcontrib><creatorcontrib>Bao, Qingjia</creatorcontrib><creatorcontrib>Liu, Chaoyang</creatorcontrib><title>MRI Motion Correction Through Disentangled CycleGAN Based on Multi-Mask K-Space Subsampling</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><description>This work proposes a new retrospective motion correction method, termed DCGAN-MS, which employs disentangled CycleGAN based onmulti-mask k-space subsampling (DCGAN-MS) to address the image domain translation challenge. The multi-mask k-space subsampling operator is utilized to decrease the complexity of motion artifacts by randomly discarding motion-affected k-space lines. The network then disentangles the subsampled, motion-corrupted images into content and artifact features using specialized encoders, and generates motion-corrected images by decoding the content features. By utilizing multi-mask k-space subsampling, motion artifact features become more sparse compared to the original image domain, enhancing the efficiency of the DCGAN-MS network. This method effectively corrects motion artifacts in clinical gadoxetic acid-enhanced human liver MRI, human brain MRI from fastMRI, and preclinical rodent brain MRI. Quantitative improvements are demonstrated with SSIM values increasing from 0.75 to 0.86 for human liver MRI with simulated motion artifacts, and from 0.72 to 0.82 for rodent brain MRI with simulated motion artifacts. Correspondingly, PSNR values increased from 26.09 to 31.09 and from 25.10 to 31.77. The method's performance was further validated on clinical and preclinical motion-corrupted MRI using the Kernel Inception Distance (KID) and Fréchet Inception Distance (FID) metrics. Additionally, ablation experiments were conducted to confirm the effectiveness of the multi-mask k-space subsampling approach.</description><subject>Atomic measurements</subject><subject>CycleGAN</subject><subject>Gadoxetic acid-enhanced human liver MRI</subject><subject>Generators</subject><subject>Image reconstruction</subject><subject>Liver</subject><subject>Magnetic resonance imaging</subject><subject>motion artifact</subject><subject>Motion artifacts</subject><subject>multi-mask k-space subsampling</subject><subject>Rodents</subject><subject>Technological innovation</subject><subject>Transient analysis</subject><subject>Translation</subject><subject>unpaired learning</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpNkD1PwzAYhC0EEqWwMzDkD7i8_kicjCVAqWhAohmQGCLbed0G0qSK06H_npR2YLo76e6Gh5BbBhPGILnPs_mEA5cTEXKRyOSMjFgYxpSH8vOcjICrmAJE_JJcef8NwGQIyYh8ZR_zIGv7qm2CtO06tH82X3ftbrUOHiuPTa-bVY1lkO5tjbPpW_Cg_RCHWrar-4pm2v8Er3S51RaD5c54vdnWVbO6JhdO1x5vTjom-fNTnr7Qxftsnk4X1EY8pkIzFwptwCYYAxOIXEooFTPMKUBQEZfGOYNWReg4N6hKA6VOeKQsohZjAsdb27Xed-iKbVdtdLcvGBQHNsXApjiwKU5shsndcVIh4r96zOIwisUvh7hg6A</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Chen, Gang</creator><creator>Xie, Han</creator><creator>Rao, Xinglong</creator><creator>Liu, Xinjie</creator><creator>Otikovs, Martins</creator><creator>Frydman, Lucio</creator><creator>Sun, Peng</creator><creator>Zhang, Zhi</creator><creator>Pan, Feng</creator><creator>Yang, Lian</creator><creator>Zhou, Xin</creator><creator>Liu, Maili</creator><creator>Bao, Qingjia</creator><creator>Liu, Chaoyang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5580-7907</orcidid><orcidid>https://orcid.org/0000-0003-0940-2535</orcidid><orcidid>https://orcid.org/0000-0001-8208-3521</orcidid></search><sort><creationdate>2025</creationdate><title>MRI Motion Correction Through Disentangled CycleGAN Based on Multi-Mask K-Space Subsampling</title><author>Chen, Gang ; Xie, Han ; Rao, Xinglong ; Liu, Xinjie ; Otikovs, Martins ; Frydman, Lucio ; Sun, Peng ; Zhang, Zhi ; Pan, Feng ; Yang, Lian ; Zhou, Xin ; Liu, Maili ; Bao, Qingjia ; Liu, Chaoyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c628-3a1f53ab0c9e8013ee2440d71b1f70e07624bffbec76ef22be7db0da9267ceea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Atomic measurements</topic><topic>CycleGAN</topic><topic>Gadoxetic acid-enhanced human liver MRI</topic><topic>Generators</topic><topic>Image reconstruction</topic><topic>Liver</topic><topic>Magnetic resonance imaging</topic><topic>motion artifact</topic><topic>Motion artifacts</topic><topic>multi-mask k-space subsampling</topic><topic>Rodents</topic><topic>Technological innovation</topic><topic>Transient analysis</topic><topic>Translation</topic><topic>unpaired learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Xie, Han</creatorcontrib><creatorcontrib>Rao, Xinglong</creatorcontrib><creatorcontrib>Liu, Xinjie</creatorcontrib><creatorcontrib>Otikovs, Martins</creatorcontrib><creatorcontrib>Frydman, Lucio</creatorcontrib><creatorcontrib>Sun, Peng</creatorcontrib><creatorcontrib>Zhang, Zhi</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><creatorcontrib>Yang, Lian</creatorcontrib><creatorcontrib>Zhou, Xin</creatorcontrib><creatorcontrib>Liu, Maili</creatorcontrib><creatorcontrib>Bao, Qingjia</creatorcontrib><creatorcontrib>Liu, Chaoyang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Gang</au><au>Xie, Han</au><au>Rao, Xinglong</au><au>Liu, Xinjie</au><au>Otikovs, Martins</au><au>Frydman, Lucio</au><au>Sun, Peng</au><au>Zhang, Zhi</au><au>Pan, Feng</au><au>Yang, Lian</au><au>Zhou, Xin</au><au>Liu, Maili</au><au>Bao, Qingjia</au><au>Liu, Chaoyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MRI Motion Correction Through Disentangled CycleGAN Based on Multi-Mask K-Space Subsampling</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><date>2025</date><risdate>2025</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>This work proposes a new retrospective motion correction method, termed DCGAN-MS, which employs disentangled CycleGAN based onmulti-mask k-space subsampling (DCGAN-MS) to address the image domain translation challenge. The multi-mask k-space subsampling operator is utilized to decrease the complexity of motion artifacts by randomly discarding motion-affected k-space lines. The network then disentangles the subsampled, motion-corrupted images into content and artifact features using specialized encoders, and generates motion-corrected images by decoding the content features. By utilizing multi-mask k-space subsampling, motion artifact features become more sparse compared to the original image domain, enhancing the efficiency of the DCGAN-MS network. This method effectively corrects motion artifacts in clinical gadoxetic acid-enhanced human liver MRI, human brain MRI from fastMRI, and preclinical rodent brain MRI. Quantitative improvements are demonstrated with SSIM values increasing from 0.75 to 0.86 for human liver MRI with simulated motion artifacts, and from 0.72 to 0.82 for rodent brain MRI with simulated motion artifacts. Correspondingly, PSNR values increased from 26.09 to 31.09 and from 25.10 to 31.77. The method's performance was further validated on clinical and preclinical motion-corrupted MRI using the Kernel Inception Distance (KID) and Fréchet Inception Distance (FID) metrics. Additionally, ablation experiments were conducted to confirm the effectiveness of the multi-mask k-space subsampling approach.</abstract><pub>IEEE</pub><doi>10.1109/TMI.2024.3523949</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5580-7907</orcidid><orcidid>https://orcid.org/0000-0003-0940-2535</orcidid><orcidid>https://orcid.org/0000-0001-8208-3521</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2025, p.1-1
issn 0278-0062
1558-254X
language eng
recordid cdi_ieee_primary_10818568
source IEEE Electronic Library (IEL) Journals
subjects Atomic measurements
CycleGAN
Gadoxetic acid-enhanced human liver MRI
Generators
Image reconstruction
Liver
Magnetic resonance imaging
motion artifact
Motion artifacts
multi-mask k-space subsampling
Rodents
Technological innovation
Transient analysis
Translation
unpaired learning
title MRI Motion Correction Through Disentangled CycleGAN Based on Multi-Mask K-Space Subsampling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A17%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MRI%20Motion%20Correction%20Through%20Disentangled%20CycleGAN%20Based%20on%20Multi-Mask%20K-Space%20Subsampling&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Chen,%20Gang&rft.date=2025&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2024.3523949&rft_dat=%3Ccrossref_ieee_%3E10_1109_TMI_2024_3523949%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c628-3a1f53ab0c9e8013ee2440d71b1f70e07624bffbec76ef22be7db0da9267ceea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10818568&rfr_iscdi=true