Loading…
Advanced Tutorial on Paratemporal Simulation Using Tree Expansion
Stochastic simulations require large amounts of time to generate enough trajectories to attain statistical significance and estimate desired performance indices with satisfactory accuracy. They require search spaces with deep uncertainty arising from inadequate or incomplete information about the sy...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 15 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Zeigler, Bernard Koertje, Christian Zanni, Cole Yoon, Sangwon Dutan, Gerardo |
description | Stochastic simulations require large amounts of time to generate enough trajectories to attain statistical significance and estimate desired performance indices with satisfactory accuracy. They require search spaces with deep uncertainty arising from inadequate or incomplete information about the system and the outcomes of interest. Paratemporal methods efficiently explore these large search spaces and offer an avenue for speedup when executed in parallel. However, combinatorial explosion of branching arising from multiple choice points presents a major hurdle that must be overcome to implement such techniques. In this advanced tutorial we show how to tackle this scalability problem by applying a systems theory-based framework covering both conventional and newly developed paratemporal tree expansion algorithms for speeding up discrete event system stochastic simulations while preserving the desired accuracy. |
doi_str_mv | 10.1109/WSC63780.2024.10838748 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10838748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10838748</ieee_id><sourcerecordid>10838748</sourcerecordid><originalsourceid>FETCH-ieee_primary_108387483</originalsourceid><addsrcrecordid>eNqFjkELgjAYhlcQZOU_iNgfyDbnch5FjI6BRkcZ-RULnbJp1L9vhzp3enme5_IitKEkoJQku0uR7VksSBCSMAooEUzEkZggP4kTwRjlLHJlijzKudhGjPA5Wlj7IIQKTkMPpWn9lPoKNS7HoTNKNrjT-CSNHKDtO-O4UO3YyEE5f7ZK33FpAHD-6qW2Tq7Q7CYbC_53l2h9yMvsuFUAUPVGtdK8q9819id_AOC4PJ4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Advanced Tutorial on Paratemporal Simulation Using Tree Expansion</title><source>IEEE Xplore All Conference Series</source><creator>Zeigler, Bernard ; Koertje, Christian ; Zanni, Cole ; Yoon, Sangwon ; Dutan, Gerardo</creator><creatorcontrib>Zeigler, Bernard ; Koertje, Christian ; Zanni, Cole ; Yoon, Sangwon ; Dutan, Gerardo</creatorcontrib><description>Stochastic simulations require large amounts of time to generate enough trajectories to attain statistical significance and estimate desired performance indices with satisfactory accuracy. They require search spaces with deep uncertainty arising from inadequate or incomplete information about the system and the outcomes of interest. Paratemporal methods efficiently explore these large search spaces and offer an avenue for speedup when executed in parallel. However, combinatorial explosion of branching arising from multiple choice points presents a major hurdle that must be overcome to implement such techniques. In this advanced tutorial we show how to tackle this scalability problem by applying a systems theory-based framework covering both conventional and newly developed paratemporal tree expansion algorithms for speeding up discrete event system stochastic simulations while preserving the desired accuracy.</description><identifier>EISSN: 1558-4305</identifier><identifier>EISBN: 9798331534202</identifier><identifier>DOI: 10.1109/WSC63780.2024.10838748</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Discrete-event systems ; Explosions ; Merging ; Scalability ; Sports ; Stochastic systems ; Trajectory ; Tutorials ; Uncertainty</subject><ispartof>Proceedings - Winter Simulation Conference, 2024, p.1-15</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10838748$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10838748$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zeigler, Bernard</creatorcontrib><creatorcontrib>Koertje, Christian</creatorcontrib><creatorcontrib>Zanni, Cole</creatorcontrib><creatorcontrib>Yoon, Sangwon</creatorcontrib><creatorcontrib>Dutan, Gerardo</creatorcontrib><title>Advanced Tutorial on Paratemporal Simulation Using Tree Expansion</title><title>Proceedings - Winter Simulation Conference</title><addtitle>WSC</addtitle><description>Stochastic simulations require large amounts of time to generate enough trajectories to attain statistical significance and estimate desired performance indices with satisfactory accuracy. They require search spaces with deep uncertainty arising from inadequate or incomplete information about the system and the outcomes of interest. Paratemporal methods efficiently explore these large search spaces and offer an avenue for speedup when executed in parallel. However, combinatorial explosion of branching arising from multiple choice points presents a major hurdle that must be overcome to implement such techniques. In this advanced tutorial we show how to tackle this scalability problem by applying a systems theory-based framework covering both conventional and newly developed paratemporal tree expansion algorithms for speeding up discrete event system stochastic simulations while preserving the desired accuracy.</description><subject>Accuracy</subject><subject>Discrete-event systems</subject><subject>Explosions</subject><subject>Merging</subject><subject>Scalability</subject><subject>Sports</subject><subject>Stochastic systems</subject><subject>Trajectory</subject><subject>Tutorials</subject><subject>Uncertainty</subject><issn>1558-4305</issn><isbn>9798331534202</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFjkELgjAYhlcQZOU_iNgfyDbnch5FjI6BRkcZ-RULnbJp1L9vhzp3enme5_IitKEkoJQku0uR7VksSBCSMAooEUzEkZggP4kTwRjlLHJlijzKudhGjPA5Wlj7IIQKTkMPpWn9lPoKNS7HoTNKNrjT-CSNHKDtO-O4UO3YyEE5f7ZK33FpAHD-6qW2Tq7Q7CYbC_53l2h9yMvsuFUAUPVGtdK8q9819id_AOC4PJ4</recordid><startdate>20241215</startdate><enddate>20241215</enddate><creator>Zeigler, Bernard</creator><creator>Koertje, Christian</creator><creator>Zanni, Cole</creator><creator>Yoon, Sangwon</creator><creator>Dutan, Gerardo</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20241215</creationdate><title>Advanced Tutorial on Paratemporal Simulation Using Tree Expansion</title><author>Zeigler, Bernard ; Koertje, Christian ; Zanni, Cole ; Yoon, Sangwon ; Dutan, Gerardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_108387483</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Discrete-event systems</topic><topic>Explosions</topic><topic>Merging</topic><topic>Scalability</topic><topic>Sports</topic><topic>Stochastic systems</topic><topic>Trajectory</topic><topic>Tutorials</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Zeigler, Bernard</creatorcontrib><creatorcontrib>Koertje, Christian</creatorcontrib><creatorcontrib>Zanni, Cole</creatorcontrib><creatorcontrib>Yoon, Sangwon</creatorcontrib><creatorcontrib>Dutan, Gerardo</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zeigler, Bernard</au><au>Koertje, Christian</au><au>Zanni, Cole</au><au>Yoon, Sangwon</au><au>Dutan, Gerardo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Advanced Tutorial on Paratemporal Simulation Using Tree Expansion</atitle><btitle>Proceedings - Winter Simulation Conference</btitle><stitle>WSC</stitle><date>2024-12-15</date><risdate>2024</risdate><spage>1</spage><epage>15</epage><pages>1-15</pages><eissn>1558-4305</eissn><eisbn>9798331534202</eisbn><abstract>Stochastic simulations require large amounts of time to generate enough trajectories to attain statistical significance and estimate desired performance indices with satisfactory accuracy. They require search spaces with deep uncertainty arising from inadequate or incomplete information about the system and the outcomes of interest. Paratemporal methods efficiently explore these large search spaces and offer an avenue for speedup when executed in parallel. However, combinatorial explosion of branching arising from multiple choice points presents a major hurdle that must be overcome to implement such techniques. In this advanced tutorial we show how to tackle this scalability problem by applying a systems theory-based framework covering both conventional and newly developed paratemporal tree expansion algorithms for speeding up discrete event system stochastic simulations while preserving the desired accuracy.</abstract><pub>IEEE</pub><doi>10.1109/WSC63780.2024.10838748</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 1558-4305 |
ispartof | Proceedings - Winter Simulation Conference, 2024, p.1-15 |
issn | 1558-4305 |
language | eng |
recordid | cdi_ieee_primary_10838748 |
source | IEEE Xplore All Conference Series |
subjects | Accuracy Discrete-event systems Explosions Merging Scalability Sports Stochastic systems Trajectory Tutorials Uncertainty |
title | Advanced Tutorial on Paratemporal Simulation Using Tree Expansion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A51%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Advanced%20Tutorial%20on%20Paratemporal%20Simulation%20Using%20Tree%20Expansion&rft.btitle=Proceedings%20-%20Winter%20Simulation%20Conference&rft.au=Zeigler,%20Bernard&rft.date=2024-12-15&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.eissn=1558-4305&rft_id=info:doi/10.1109/WSC63780.2024.10838748&rft.eisbn=9798331534202&rft_dat=%3Cieee_CHZPO%3E10838748%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_108387483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10838748&rfr_iscdi=true |