Loading…

Advanced Tutorial on Paratemporal Simulation Using Tree Expansion

Stochastic simulations require large amounts of time to generate enough trajectories to attain statistical significance and estimate desired performance indices with satisfactory accuracy. They require search spaces with deep uncertainty arising from inadequate or incomplete information about the sy...

Full description

Saved in:
Bibliographic Details
Main Authors: Zeigler, Bernard, Koertje, Christian, Zanni, Cole, Yoon, Sangwon, Dutan, Gerardo
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 15
container_issue
container_start_page 1
container_title
container_volume
creator Zeigler, Bernard
Koertje, Christian
Zanni, Cole
Yoon, Sangwon
Dutan, Gerardo
description Stochastic simulations require large amounts of time to generate enough trajectories to attain statistical significance and estimate desired performance indices with satisfactory accuracy. They require search spaces with deep uncertainty arising from inadequate or incomplete information about the system and the outcomes of interest. Paratemporal methods efficiently explore these large search spaces and offer an avenue for speedup when executed in parallel. However, combinatorial explosion of branching arising from multiple choice points presents a major hurdle that must be overcome to implement such techniques. In this advanced tutorial we show how to tackle this scalability problem by applying a systems theory-based framework covering both conventional and newly developed paratemporal tree expansion algorithms for speeding up discrete event system stochastic simulations while preserving the desired accuracy.
doi_str_mv 10.1109/WSC63780.2024.10838748
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10838748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10838748</ieee_id><sourcerecordid>10838748</sourcerecordid><originalsourceid>FETCH-ieee_primary_108387483</originalsourceid><addsrcrecordid>eNqFjkELgjAYhlcQZOU_iNgfyDbnch5FjI6BRkcZ-RULnbJp1L9vhzp3enme5_IitKEkoJQku0uR7VksSBCSMAooEUzEkZggP4kTwRjlLHJlijzKudhGjPA5Wlj7IIQKTkMPpWn9lPoKNS7HoTNKNrjT-CSNHKDtO-O4UO3YyEE5f7ZK33FpAHD-6qW2Tq7Q7CYbC_53l2h9yMvsuFUAUPVGtdK8q9819id_AOC4PJ4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Advanced Tutorial on Paratemporal Simulation Using Tree Expansion</title><source>IEEE Xplore All Conference Series</source><creator>Zeigler, Bernard ; Koertje, Christian ; Zanni, Cole ; Yoon, Sangwon ; Dutan, Gerardo</creator><creatorcontrib>Zeigler, Bernard ; Koertje, Christian ; Zanni, Cole ; Yoon, Sangwon ; Dutan, Gerardo</creatorcontrib><description>Stochastic simulations require large amounts of time to generate enough trajectories to attain statistical significance and estimate desired performance indices with satisfactory accuracy. They require search spaces with deep uncertainty arising from inadequate or incomplete information about the system and the outcomes of interest. Paratemporal methods efficiently explore these large search spaces and offer an avenue for speedup when executed in parallel. However, combinatorial explosion of branching arising from multiple choice points presents a major hurdle that must be overcome to implement such techniques. In this advanced tutorial we show how to tackle this scalability problem by applying a systems theory-based framework covering both conventional and newly developed paratemporal tree expansion algorithms for speeding up discrete event system stochastic simulations while preserving the desired accuracy.</description><identifier>EISSN: 1558-4305</identifier><identifier>EISBN: 9798331534202</identifier><identifier>DOI: 10.1109/WSC63780.2024.10838748</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Discrete-event systems ; Explosions ; Merging ; Scalability ; Sports ; Stochastic systems ; Trajectory ; Tutorials ; Uncertainty</subject><ispartof>Proceedings - Winter Simulation Conference, 2024, p.1-15</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10838748$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10838748$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zeigler, Bernard</creatorcontrib><creatorcontrib>Koertje, Christian</creatorcontrib><creatorcontrib>Zanni, Cole</creatorcontrib><creatorcontrib>Yoon, Sangwon</creatorcontrib><creatorcontrib>Dutan, Gerardo</creatorcontrib><title>Advanced Tutorial on Paratemporal Simulation Using Tree Expansion</title><title>Proceedings - Winter Simulation Conference</title><addtitle>WSC</addtitle><description>Stochastic simulations require large amounts of time to generate enough trajectories to attain statistical significance and estimate desired performance indices with satisfactory accuracy. They require search spaces with deep uncertainty arising from inadequate or incomplete information about the system and the outcomes of interest. Paratemporal methods efficiently explore these large search spaces and offer an avenue for speedup when executed in parallel. However, combinatorial explosion of branching arising from multiple choice points presents a major hurdle that must be overcome to implement such techniques. In this advanced tutorial we show how to tackle this scalability problem by applying a systems theory-based framework covering both conventional and newly developed paratemporal tree expansion algorithms for speeding up discrete event system stochastic simulations while preserving the desired accuracy.</description><subject>Accuracy</subject><subject>Discrete-event systems</subject><subject>Explosions</subject><subject>Merging</subject><subject>Scalability</subject><subject>Sports</subject><subject>Stochastic systems</subject><subject>Trajectory</subject><subject>Tutorials</subject><subject>Uncertainty</subject><issn>1558-4305</issn><isbn>9798331534202</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFjkELgjAYhlcQZOU_iNgfyDbnch5FjI6BRkcZ-RULnbJp1L9vhzp3enme5_IitKEkoJQku0uR7VksSBCSMAooEUzEkZggP4kTwRjlLHJlijzKudhGjPA5Wlj7IIQKTkMPpWn9lPoKNS7HoTNKNrjT-CSNHKDtO-O4UO3YyEE5f7ZK33FpAHD-6qW2Tq7Q7CYbC_53l2h9yMvsuFUAUPVGtdK8q9819id_AOC4PJ4</recordid><startdate>20241215</startdate><enddate>20241215</enddate><creator>Zeigler, Bernard</creator><creator>Koertje, Christian</creator><creator>Zanni, Cole</creator><creator>Yoon, Sangwon</creator><creator>Dutan, Gerardo</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20241215</creationdate><title>Advanced Tutorial on Paratemporal Simulation Using Tree Expansion</title><author>Zeigler, Bernard ; Koertje, Christian ; Zanni, Cole ; Yoon, Sangwon ; Dutan, Gerardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_108387483</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Discrete-event systems</topic><topic>Explosions</topic><topic>Merging</topic><topic>Scalability</topic><topic>Sports</topic><topic>Stochastic systems</topic><topic>Trajectory</topic><topic>Tutorials</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Zeigler, Bernard</creatorcontrib><creatorcontrib>Koertje, Christian</creatorcontrib><creatorcontrib>Zanni, Cole</creatorcontrib><creatorcontrib>Yoon, Sangwon</creatorcontrib><creatorcontrib>Dutan, Gerardo</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zeigler, Bernard</au><au>Koertje, Christian</au><au>Zanni, Cole</au><au>Yoon, Sangwon</au><au>Dutan, Gerardo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Advanced Tutorial on Paratemporal Simulation Using Tree Expansion</atitle><btitle>Proceedings - Winter Simulation Conference</btitle><stitle>WSC</stitle><date>2024-12-15</date><risdate>2024</risdate><spage>1</spage><epage>15</epage><pages>1-15</pages><eissn>1558-4305</eissn><eisbn>9798331534202</eisbn><abstract>Stochastic simulations require large amounts of time to generate enough trajectories to attain statistical significance and estimate desired performance indices with satisfactory accuracy. They require search spaces with deep uncertainty arising from inadequate or incomplete information about the system and the outcomes of interest. Paratemporal methods efficiently explore these large search spaces and offer an avenue for speedup when executed in parallel. However, combinatorial explosion of branching arising from multiple choice points presents a major hurdle that must be overcome to implement such techniques. In this advanced tutorial we show how to tackle this scalability problem by applying a systems theory-based framework covering both conventional and newly developed paratemporal tree expansion algorithms for speeding up discrete event system stochastic simulations while preserving the desired accuracy.</abstract><pub>IEEE</pub><doi>10.1109/WSC63780.2024.10838748</doi></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1558-4305
ispartof Proceedings - Winter Simulation Conference, 2024, p.1-15
issn 1558-4305
language eng
recordid cdi_ieee_primary_10838748
source IEEE Xplore All Conference Series
subjects Accuracy
Discrete-event systems
Explosions
Merging
Scalability
Sports
Stochastic systems
Trajectory
Tutorials
Uncertainty
title Advanced Tutorial on Paratemporal Simulation Using Tree Expansion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A51%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Advanced%20Tutorial%20on%20Paratemporal%20Simulation%20Using%20Tree%20Expansion&rft.btitle=Proceedings%20-%20Winter%20Simulation%20Conference&rft.au=Zeigler,%20Bernard&rft.date=2024-12-15&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.eissn=1558-4305&rft_id=info:doi/10.1109/WSC63780.2024.10838748&rft.eisbn=9798331534202&rft_dat=%3Cieee_CHZPO%3E10838748%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_108387483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10838748&rfr_iscdi=true