Loading…

Time-domain analysis of magnetic resonance spectra and chemical shift images

The utility of adaptive prediction and filtering algorithms and the autocorrelation-based Yule-Walker algorithm to predict and filter complex NMR (nuclear magnetic resonance) data is demonstrated. The application of these methods improves the available signal-to-noise ratio using time-domain analysi...

Full description

Saved in:
Bibliographic Details
Main Authors: Canady, L.D., Jordan, R., Asgharzadeh, A., Abousleman, G., Koechner, D., Griffey, R.H.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 437
container_issue
container_start_page 432
container_title
container_volume
creator Canady, L.D.
Jordan, R.
Asgharzadeh, A.
Abousleman, G.
Koechner, D.
Griffey, R.H.
description The utility of adaptive prediction and filtering algorithms and the autocorrelation-based Yule-Walker algorithm to predict and filter complex NMR (nuclear magnetic resonance) data is demonstrated. The application of these methods improves the available signal-to-noise ratio using time-domain analysis, and increases the low resolution via prediction algorithms in data containing phase errors introduced by hardware limitations. The application of the complex least-mean-squares and the modified-least-mean-squares transversal and lattice algorithms to low- and high-resolution NMR data records is demonstrated. The resolution and windowing problems found in the discrete Fourier transform are overcome by these alternative methods.< >
doi_str_mv 10.1109/CBMSYS.1990.109430
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_109430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>109430</ieee_id><sourcerecordid>109430</sourcerecordid><originalsourceid>FETCH-LOGICAL-i172t-40a9021ef56b5b131ebed717e784d0c65c0a8f89d6d047466866003decac6a9a3</originalsourceid><addsrcrecordid>eNotT8lqwzAUFJRCSuofyEk_4PTJlrUcW9MNHHpIesgpPEvPjYqXYPmSv68gncvAMMzC2EbAVgiwT_XLbn_cb4W1SQArS7hjmdUGjDDKgoRixbIYfyGhqowoxQNrDmGg3E8DhpHjiP01hsinjg_4M9ISHJ8pTiOOjni8kFtmTDbP3ZmG4LDn8Ry6hYdkp_jI7jvsI2X_vGbfb6-H-iNvvt4_6-cmD0IXSy4BLRSCukq1VZtmUEteC03aSA9OVQ7QdMZ65UFqqZRRCqD05NAptFiu2eaWG4jodJlT-3w93S6Xf9FiTPE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Time-domain analysis of magnetic resonance spectra and chemical shift images</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Canady, L.D. ; Jordan, R. ; Asgharzadeh, A. ; Abousleman, G. ; Koechner, D. ; Griffey, R.H.</creator><creatorcontrib>Canady, L.D. ; Jordan, R. ; Asgharzadeh, A. ; Abousleman, G. ; Koechner, D. ; Griffey, R.H.</creatorcontrib><description>The utility of adaptive prediction and filtering algorithms and the autocorrelation-based Yule-Walker algorithm to predict and filter complex NMR (nuclear magnetic resonance) data is demonstrated. The application of these methods improves the available signal-to-noise ratio using time-domain analysis, and increases the low resolution via prediction algorithms in data containing phase errors introduced by hardware limitations. The application of the complex least-mean-squares and the modified-least-mean-squares transversal and lattice algorithms to low- and high-resolution NMR data records is demonstrated. The resolution and windowing problems found in the discrete Fourier transform are overcome by these alternative methods.&lt; &gt;</description><identifier>ISBN: 9780818690402</identifier><identifier>ISBN: 0818690402</identifier><identifier>DOI: 10.1109/CBMSYS.1990.109430</identifier><language>eng</language><publisher>IEEE Comput. Soc. Press</publisher><subject>Adaptive filters ; Autocorrelation ; Chemical analysis ; Filtering algorithms ; Magnetic resonance ; Magnetic separation ; Nuclear magnetic resonance ; Prediction algorithms ; Signal resolution ; Time domain analysis</subject><ispartof>[1990] Proceedings. Third Annual IEEE Symposium on Computer-Based Medical Systems, 1990, p.432-437</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/109430$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/109430$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Canady, L.D.</creatorcontrib><creatorcontrib>Jordan, R.</creatorcontrib><creatorcontrib>Asgharzadeh, A.</creatorcontrib><creatorcontrib>Abousleman, G.</creatorcontrib><creatorcontrib>Koechner, D.</creatorcontrib><creatorcontrib>Griffey, R.H.</creatorcontrib><title>Time-domain analysis of magnetic resonance spectra and chemical shift images</title><title>[1990] Proceedings. Third Annual IEEE Symposium on Computer-Based Medical Systems</title><addtitle>CBMSYS</addtitle><description>The utility of adaptive prediction and filtering algorithms and the autocorrelation-based Yule-Walker algorithm to predict and filter complex NMR (nuclear magnetic resonance) data is demonstrated. The application of these methods improves the available signal-to-noise ratio using time-domain analysis, and increases the low resolution via prediction algorithms in data containing phase errors introduced by hardware limitations. The application of the complex least-mean-squares and the modified-least-mean-squares transversal and lattice algorithms to low- and high-resolution NMR data records is demonstrated. The resolution and windowing problems found in the discrete Fourier transform are overcome by these alternative methods.&lt; &gt;</description><subject>Adaptive filters</subject><subject>Autocorrelation</subject><subject>Chemical analysis</subject><subject>Filtering algorithms</subject><subject>Magnetic resonance</subject><subject>Magnetic separation</subject><subject>Nuclear magnetic resonance</subject><subject>Prediction algorithms</subject><subject>Signal resolution</subject><subject>Time domain analysis</subject><isbn>9780818690402</isbn><isbn>0818690402</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1990</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotT8lqwzAUFJRCSuofyEk_4PTJlrUcW9MNHHpIesgpPEvPjYqXYPmSv68gncvAMMzC2EbAVgiwT_XLbn_cb4W1SQArS7hjmdUGjDDKgoRixbIYfyGhqowoxQNrDmGg3E8DhpHjiP01hsinjg_4M9ISHJ8pTiOOjni8kFtmTDbP3ZmG4LDn8Ry6hYdkp_jI7jvsI2X_vGbfb6-H-iNvvt4_6-cmD0IXSy4BLRSCukq1VZtmUEteC03aSA9OVQ7QdMZ65UFqqZRRCqD05NAptFiu2eaWG4jodJlT-3w93S6Xf9FiTPE</recordid><startdate>1990</startdate><enddate>1990</enddate><creator>Canady, L.D.</creator><creator>Jordan, R.</creator><creator>Asgharzadeh, A.</creator><creator>Abousleman, G.</creator><creator>Koechner, D.</creator><creator>Griffey, R.H.</creator><general>IEEE Comput. Soc. Press</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1990</creationdate><title>Time-domain analysis of magnetic resonance spectra and chemical shift images</title><author>Canady, L.D. ; Jordan, R. ; Asgharzadeh, A. ; Abousleman, G. ; Koechner, D. ; Griffey, R.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i172t-40a9021ef56b5b131ebed717e784d0c65c0a8f89d6d047466866003decac6a9a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Adaptive filters</topic><topic>Autocorrelation</topic><topic>Chemical analysis</topic><topic>Filtering algorithms</topic><topic>Magnetic resonance</topic><topic>Magnetic separation</topic><topic>Nuclear magnetic resonance</topic><topic>Prediction algorithms</topic><topic>Signal resolution</topic><topic>Time domain analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Canady, L.D.</creatorcontrib><creatorcontrib>Jordan, R.</creatorcontrib><creatorcontrib>Asgharzadeh, A.</creatorcontrib><creatorcontrib>Abousleman, G.</creatorcontrib><creatorcontrib>Koechner, D.</creatorcontrib><creatorcontrib>Griffey, R.H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Canady, L.D.</au><au>Jordan, R.</au><au>Asgharzadeh, A.</au><au>Abousleman, G.</au><au>Koechner, D.</au><au>Griffey, R.H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Time-domain analysis of magnetic resonance spectra and chemical shift images</atitle><btitle>[1990] Proceedings. Third Annual IEEE Symposium on Computer-Based Medical Systems</btitle><stitle>CBMSYS</stitle><date>1990</date><risdate>1990</risdate><spage>432</spage><epage>437</epage><pages>432-437</pages><isbn>9780818690402</isbn><isbn>0818690402</isbn><abstract>The utility of adaptive prediction and filtering algorithms and the autocorrelation-based Yule-Walker algorithm to predict and filter complex NMR (nuclear magnetic resonance) data is demonstrated. The application of these methods improves the available signal-to-noise ratio using time-domain analysis, and increases the low resolution via prediction algorithms in data containing phase errors introduced by hardware limitations. The application of the complex least-mean-squares and the modified-least-mean-squares transversal and lattice algorithms to low- and high-resolution NMR data records is demonstrated. The resolution and windowing problems found in the discrete Fourier transform are overcome by these alternative methods.&lt; &gt;</abstract><pub>IEEE Comput. Soc. Press</pub><doi>10.1109/CBMSYS.1990.109430</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780818690402
ispartof [1990] Proceedings. Third Annual IEEE Symposium on Computer-Based Medical Systems, 1990, p.432-437
issn
language eng
recordid cdi_ieee_primary_109430
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptive filters
Autocorrelation
Chemical analysis
Filtering algorithms
Magnetic resonance
Magnetic separation
Nuclear magnetic resonance
Prediction algorithms
Signal resolution
Time domain analysis
title Time-domain analysis of magnetic resonance spectra and chemical shift images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A58%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Time-domain%20analysis%20of%20magnetic%20resonance%20spectra%20and%20chemical%20shift%20images&rft.btitle=%5B1990%5D%20Proceedings.%20Third%20Annual%20IEEE%20Symposium%20on%20Computer-Based%20Medical%20Systems&rft.au=Canady,%20L.D.&rft.date=1990&rft.spage=432&rft.epage=437&rft.pages=432-437&rft.isbn=9780818690402&rft.isbn_list=0818690402&rft_id=info:doi/10.1109/CBMSYS.1990.109430&rft_dat=%3Cieee_6IE%3E109430%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i172t-40a9021ef56b5b131ebed717e784d0c65c0a8f89d6d047466866003decac6a9a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=109430&rfr_iscdi=true