Loading…
A survey and evaluation of edge detection operators application to medical images
One of the objectives of image analysis is to extract its dominating information. Thus we use segmentation to associate a stamp to each pixel according to the carried information (gray level or color) and its specific distribution in the image. Thereby, the segmentation of the image is defined as be...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | 4 pp. vol.4 |
container_title | |
container_volume | 4 |
creator | Trichili, H. Bouhlel, M.-S. Derbel, N. Kamoun, L. |
description | One of the objectives of image analysis is to extract its dominating information. Thus we use segmentation to associate a stamp to each pixel according to the carried information (gray level or color) and its specific distribution in the image. Thereby, the segmentation of the image is defined as being the low level step of processing that extracts and describes present significant objects in a scene, the most often in the form of regions or edges. In the literature, different methods have been elaborated in order to detect image edges. They are gathered in two families: on the one hand methods privileging an approach by border (derivative, surfaces, and morphological methods) named the edge approach; on the other hand those privileging an approach by regions (Markovian and structural methods). In this work, we are interested in the different methods using the edge approach for the image segmentation. Many image segmentation techniques are available. We describe derivative methods, optimal filtering, and segmentation for color images. |
doi_str_mv | 10.1109/ICSMC.2002.1173373 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_1173373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1173373</ieee_id><sourcerecordid>1173373</sourcerecordid><originalsourceid>FETCH-ieee_primary_11733733</originalsourceid><addsrcrecordid>eNp9jssKgkAUhg9dILu8QG3OC2hzyUaXIUUtWkQt2smgRzEsZcYE3z6h1q1-vv8CP8CSM49zFq5P0fUceYIx0bOSUskBOMJXyuVb3x_ClKmASbWRio_A4Wwr3FCI-wSm1j76FdvwwIHLDu3btNShfqVIrS7fuimqF1YZUpoTptRQ8nVqMrqpjEVd12WRfHtNhU9KeyqxeOqc7BzGmS4tLX46g9Vhf4uObkFEcW36luni32X5P_0AWo9Cvw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A survey and evaluation of edge detection operators application to medical images</title><source>IEEE Xplore All Conference Series</source><creator>Trichili, H. ; Bouhlel, M.-S. ; Derbel, N. ; Kamoun, L.</creator><creatorcontrib>Trichili, H. ; Bouhlel, M.-S. ; Derbel, N. ; Kamoun, L.</creatorcontrib><description>One of the objectives of image analysis is to extract its dominating information. Thus we use segmentation to associate a stamp to each pixel according to the carried information (gray level or color) and its specific distribution in the image. Thereby, the segmentation of the image is defined as being the low level step of processing that extracts and describes present significant objects in a scene, the most often in the form of regions or edges. In the literature, different methods have been elaborated in order to detect image edges. They are gathered in two families: on the one hand methods privileging an approach by border (derivative, surfaces, and morphological methods) named the edge approach; on the other hand those privileging an approach by regions (Markovian and structural methods). In this work, we are interested in the different methods using the edge approach for the image segmentation. Many image segmentation techniques are available. We describe derivative methods, optimal filtering, and segmentation for color images.</description><identifier>ISSN: 1062-922X</identifier><identifier>ISBN: 0780374371</identifier><identifier>ISBN: 9780780374379</identifier><identifier>EISSN: 2577-1655</identifier><identifier>DOI: 10.1109/ICSMC.2002.1173373</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical imaging ; Image color analysis ; Image edge detection ; Image segmentation ; Information technology ; Intelligent control ; Laboratories ; Medical diagnostic imaging ; Nonlinear filters ; Pixel</subject><ispartof>IEEE International Conference on Systems, Man and Cybernetics, 2002, Vol.4, p.4 pp. vol.4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1173373$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,4050,4051,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1173373$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Trichili, H.</creatorcontrib><creatorcontrib>Bouhlel, M.-S.</creatorcontrib><creatorcontrib>Derbel, N.</creatorcontrib><creatorcontrib>Kamoun, L.</creatorcontrib><title>A survey and evaluation of edge detection operators application to medical images</title><title>IEEE International Conference on Systems, Man and Cybernetics</title><addtitle>ICSMC</addtitle><description>One of the objectives of image analysis is to extract its dominating information. Thus we use segmentation to associate a stamp to each pixel according to the carried information (gray level or color) and its specific distribution in the image. Thereby, the segmentation of the image is defined as being the low level step of processing that extracts and describes present significant objects in a scene, the most often in the form of regions or edges. In the literature, different methods have been elaborated in order to detect image edges. They are gathered in two families: on the one hand methods privileging an approach by border (derivative, surfaces, and morphological methods) named the edge approach; on the other hand those privileging an approach by regions (Markovian and structural methods). In this work, we are interested in the different methods using the edge approach for the image segmentation. Many image segmentation techniques are available. We describe derivative methods, optimal filtering, and segmentation for color images.</description><subject>Biomedical imaging</subject><subject>Image color analysis</subject><subject>Image edge detection</subject><subject>Image segmentation</subject><subject>Information technology</subject><subject>Intelligent control</subject><subject>Laboratories</subject><subject>Medical diagnostic imaging</subject><subject>Nonlinear filters</subject><subject>Pixel</subject><issn>1062-922X</issn><issn>2577-1655</issn><isbn>0780374371</isbn><isbn>9780780374379</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNp9jssKgkAUhg9dILu8QG3OC2hzyUaXIUUtWkQt2smgRzEsZcYE3z6h1q1-vv8CP8CSM49zFq5P0fUceYIx0bOSUskBOMJXyuVb3x_ClKmASbWRio_A4Wwr3FCI-wSm1j76FdvwwIHLDu3btNShfqVIrS7fuimqF1YZUpoTptRQ8nVqMrqpjEVd12WRfHtNhU9KeyqxeOqc7BzGmS4tLX46g9Vhf4uObkFEcW36luni32X5P_0AWo9Cvw</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Trichili, H.</creator><creator>Bouhlel, M.-S.</creator><creator>Derbel, N.</creator><creator>Kamoun, L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2002</creationdate><title>A survey and evaluation of edge detection operators application to medical images</title><author>Trichili, H. ; Bouhlel, M.-S. ; Derbel, N. ; Kamoun, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_11733733</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Biomedical imaging</topic><topic>Image color analysis</topic><topic>Image edge detection</topic><topic>Image segmentation</topic><topic>Information technology</topic><topic>Intelligent control</topic><topic>Laboratories</topic><topic>Medical diagnostic imaging</topic><topic>Nonlinear filters</topic><topic>Pixel</topic><toplevel>online_resources</toplevel><creatorcontrib>Trichili, H.</creatorcontrib><creatorcontrib>Bouhlel, M.-S.</creatorcontrib><creatorcontrib>Derbel, N.</creatorcontrib><creatorcontrib>Kamoun, L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Trichili, H.</au><au>Bouhlel, M.-S.</au><au>Derbel, N.</au><au>Kamoun, L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A survey and evaluation of edge detection operators application to medical images</atitle><btitle>IEEE International Conference on Systems, Man and Cybernetics</btitle><stitle>ICSMC</stitle><date>2002</date><risdate>2002</risdate><volume>4</volume><spage>4 pp. vol.4</spage><pages>4 pp. vol.4-</pages><issn>1062-922X</issn><eissn>2577-1655</eissn><isbn>0780374371</isbn><isbn>9780780374379</isbn><abstract>One of the objectives of image analysis is to extract its dominating information. Thus we use segmentation to associate a stamp to each pixel according to the carried information (gray level or color) and its specific distribution in the image. Thereby, the segmentation of the image is defined as being the low level step of processing that extracts and describes present significant objects in a scene, the most often in the form of regions or edges. In the literature, different methods have been elaborated in order to detect image edges. They are gathered in two families: on the one hand methods privileging an approach by border (derivative, surfaces, and morphological methods) named the edge approach; on the other hand those privileging an approach by regions (Markovian and structural methods). In this work, we are interested in the different methods using the edge approach for the image segmentation. Many image segmentation techniques are available. We describe derivative methods, optimal filtering, and segmentation for color images.</abstract><pub>IEEE</pub><doi>10.1109/ICSMC.2002.1173373</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1062-922X |
ispartof | IEEE International Conference on Systems, Man and Cybernetics, 2002, Vol.4, p.4 pp. vol.4 |
issn | 1062-922X 2577-1655 |
language | eng |
recordid | cdi_ieee_primary_1173373 |
source | IEEE Xplore All Conference Series |
subjects | Biomedical imaging Image color analysis Image edge detection Image segmentation Information technology Intelligent control Laboratories Medical diagnostic imaging Nonlinear filters Pixel |
title | A survey and evaluation of edge detection operators application to medical images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A53%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20survey%20and%20evaluation%20of%20edge%20detection%20operators%20application%20to%20medical%20images&rft.btitle=IEEE%20International%20Conference%20on%20Systems,%20Man%20and%20Cybernetics&rft.au=Trichili,%20H.&rft.date=2002&rft.volume=4&rft.spage=4%20pp.%20vol.4&rft.pages=4%20pp.%20vol.4-&rft.issn=1062-922X&rft.eissn=2577-1655&rft.isbn=0780374371&rft.isbn_list=9780780374379&rft_id=info:doi/10.1109/ICSMC.2002.1173373&rft_dat=%3Cieee_CHZPO%3E1173373%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_11733733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1173373&rfr_iscdi=true |