Loading…

A survey and evaluation of edge detection operators application to medical images

One of the objectives of image analysis is to extract its dominating information. Thus we use segmentation to associate a stamp to each pixel according to the carried information (gray level or color) and its specific distribution in the image. Thereby, the segmentation of the image is defined as be...

Full description

Saved in:
Bibliographic Details
Main Authors: Trichili, H., Bouhlel, M.-S., Derbel, N., Kamoun, L.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page 4 pp. vol.4
container_title
container_volume 4
creator Trichili, H.
Bouhlel, M.-S.
Derbel, N.
Kamoun, L.
description One of the objectives of image analysis is to extract its dominating information. Thus we use segmentation to associate a stamp to each pixel according to the carried information (gray level or color) and its specific distribution in the image. Thereby, the segmentation of the image is defined as being the low level step of processing that extracts and describes present significant objects in a scene, the most often in the form of regions or edges. In the literature, different methods have been elaborated in order to detect image edges. They are gathered in two families: on the one hand methods privileging an approach by border (derivative, surfaces, and morphological methods) named the edge approach; on the other hand those privileging an approach by regions (Markovian and structural methods). In this work, we are interested in the different methods using the edge approach for the image segmentation. Many image segmentation techniques are available. We describe derivative methods, optimal filtering, and segmentation for color images.
doi_str_mv 10.1109/ICSMC.2002.1173373
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_1173373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1173373</ieee_id><sourcerecordid>1173373</sourcerecordid><originalsourceid>FETCH-ieee_primary_11733733</originalsourceid><addsrcrecordid>eNp9jssKgkAUhg9dILu8QG3OC2hzyUaXIUUtWkQt2smgRzEsZcYE3z6h1q1-vv8CP8CSM49zFq5P0fUceYIx0bOSUskBOMJXyuVb3x_ClKmASbWRio_A4Wwr3FCI-wSm1j76FdvwwIHLDu3btNShfqVIrS7fuimqF1YZUpoTptRQ8nVqMrqpjEVd12WRfHtNhU9KeyqxeOqc7BzGmS4tLX46g9Vhf4uObkFEcW36luni32X5P_0AWo9Cvw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A survey and evaluation of edge detection operators application to medical images</title><source>IEEE Xplore All Conference Series</source><creator>Trichili, H. ; Bouhlel, M.-S. ; Derbel, N. ; Kamoun, L.</creator><creatorcontrib>Trichili, H. ; Bouhlel, M.-S. ; Derbel, N. ; Kamoun, L.</creatorcontrib><description>One of the objectives of image analysis is to extract its dominating information. Thus we use segmentation to associate a stamp to each pixel according to the carried information (gray level or color) and its specific distribution in the image. Thereby, the segmentation of the image is defined as being the low level step of processing that extracts and describes present significant objects in a scene, the most often in the form of regions or edges. In the literature, different methods have been elaborated in order to detect image edges. They are gathered in two families: on the one hand methods privileging an approach by border (derivative, surfaces, and morphological methods) named the edge approach; on the other hand those privileging an approach by regions (Markovian and structural methods). In this work, we are interested in the different methods using the edge approach for the image segmentation. Many image segmentation techniques are available. We describe derivative methods, optimal filtering, and segmentation for color images.</description><identifier>ISSN: 1062-922X</identifier><identifier>ISBN: 0780374371</identifier><identifier>ISBN: 9780780374379</identifier><identifier>EISSN: 2577-1655</identifier><identifier>DOI: 10.1109/ICSMC.2002.1173373</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical imaging ; Image color analysis ; Image edge detection ; Image segmentation ; Information technology ; Intelligent control ; Laboratories ; Medical diagnostic imaging ; Nonlinear filters ; Pixel</subject><ispartof>IEEE International Conference on Systems, Man and Cybernetics, 2002, Vol.4, p.4 pp. vol.4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1173373$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,4050,4051,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1173373$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Trichili, H.</creatorcontrib><creatorcontrib>Bouhlel, M.-S.</creatorcontrib><creatorcontrib>Derbel, N.</creatorcontrib><creatorcontrib>Kamoun, L.</creatorcontrib><title>A survey and evaluation of edge detection operators application to medical images</title><title>IEEE International Conference on Systems, Man and Cybernetics</title><addtitle>ICSMC</addtitle><description>One of the objectives of image analysis is to extract its dominating information. Thus we use segmentation to associate a stamp to each pixel according to the carried information (gray level or color) and its specific distribution in the image. Thereby, the segmentation of the image is defined as being the low level step of processing that extracts and describes present significant objects in a scene, the most often in the form of regions or edges. In the literature, different methods have been elaborated in order to detect image edges. They are gathered in two families: on the one hand methods privileging an approach by border (derivative, surfaces, and morphological methods) named the edge approach; on the other hand those privileging an approach by regions (Markovian and structural methods). In this work, we are interested in the different methods using the edge approach for the image segmentation. Many image segmentation techniques are available. We describe derivative methods, optimal filtering, and segmentation for color images.</description><subject>Biomedical imaging</subject><subject>Image color analysis</subject><subject>Image edge detection</subject><subject>Image segmentation</subject><subject>Information technology</subject><subject>Intelligent control</subject><subject>Laboratories</subject><subject>Medical diagnostic imaging</subject><subject>Nonlinear filters</subject><subject>Pixel</subject><issn>1062-922X</issn><issn>2577-1655</issn><isbn>0780374371</isbn><isbn>9780780374379</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNp9jssKgkAUhg9dILu8QG3OC2hzyUaXIUUtWkQt2smgRzEsZcYE3z6h1q1-vv8CP8CSM49zFq5P0fUceYIx0bOSUskBOMJXyuVb3x_ClKmASbWRio_A4Wwr3FCI-wSm1j76FdvwwIHLDu3btNShfqVIrS7fuimqF1YZUpoTptRQ8nVqMrqpjEVd12WRfHtNhU9KeyqxeOqc7BzGmS4tLX46g9Vhf4uObkFEcW36luni32X5P_0AWo9Cvw</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Trichili, H.</creator><creator>Bouhlel, M.-S.</creator><creator>Derbel, N.</creator><creator>Kamoun, L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2002</creationdate><title>A survey and evaluation of edge detection operators application to medical images</title><author>Trichili, H. ; Bouhlel, M.-S. ; Derbel, N. ; Kamoun, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_11733733</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Biomedical imaging</topic><topic>Image color analysis</topic><topic>Image edge detection</topic><topic>Image segmentation</topic><topic>Information technology</topic><topic>Intelligent control</topic><topic>Laboratories</topic><topic>Medical diagnostic imaging</topic><topic>Nonlinear filters</topic><topic>Pixel</topic><toplevel>online_resources</toplevel><creatorcontrib>Trichili, H.</creatorcontrib><creatorcontrib>Bouhlel, M.-S.</creatorcontrib><creatorcontrib>Derbel, N.</creatorcontrib><creatorcontrib>Kamoun, L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Trichili, H.</au><au>Bouhlel, M.-S.</au><au>Derbel, N.</au><au>Kamoun, L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A survey and evaluation of edge detection operators application to medical images</atitle><btitle>IEEE International Conference on Systems, Man and Cybernetics</btitle><stitle>ICSMC</stitle><date>2002</date><risdate>2002</risdate><volume>4</volume><spage>4 pp. vol.4</spage><pages>4 pp. vol.4-</pages><issn>1062-922X</issn><eissn>2577-1655</eissn><isbn>0780374371</isbn><isbn>9780780374379</isbn><abstract>One of the objectives of image analysis is to extract its dominating information. Thus we use segmentation to associate a stamp to each pixel according to the carried information (gray level or color) and its specific distribution in the image. Thereby, the segmentation of the image is defined as being the low level step of processing that extracts and describes present significant objects in a scene, the most often in the form of regions or edges. In the literature, different methods have been elaborated in order to detect image edges. They are gathered in two families: on the one hand methods privileging an approach by border (derivative, surfaces, and morphological methods) named the edge approach; on the other hand those privileging an approach by regions (Markovian and structural methods). In this work, we are interested in the different methods using the edge approach for the image segmentation. Many image segmentation techniques are available. We describe derivative methods, optimal filtering, and segmentation for color images.</abstract><pub>IEEE</pub><doi>10.1109/ICSMC.2002.1173373</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1062-922X
ispartof IEEE International Conference on Systems, Man and Cybernetics, 2002, Vol.4, p.4 pp. vol.4
issn 1062-922X
2577-1655
language eng
recordid cdi_ieee_primary_1173373
source IEEE Xplore All Conference Series
subjects Biomedical imaging
Image color analysis
Image edge detection
Image segmentation
Information technology
Intelligent control
Laboratories
Medical diagnostic imaging
Nonlinear filters
Pixel
title A survey and evaluation of edge detection operators application to medical images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A53%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20survey%20and%20evaluation%20of%20edge%20detection%20operators%20application%20to%20medical%20images&rft.btitle=IEEE%20International%20Conference%20on%20Systems,%20Man%20and%20Cybernetics&rft.au=Trichili,%20H.&rft.date=2002&rft.volume=4&rft.spage=4%20pp.%20vol.4&rft.pages=4%20pp.%20vol.4-&rft.issn=1062-922X&rft.eissn=2577-1655&rft.isbn=0780374371&rft.isbn_list=9780780374379&rft_id=info:doi/10.1109/ICSMC.2002.1173373&rft_dat=%3Cieee_CHZPO%3E1173373%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_11733733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1173373&rfr_iscdi=true