Loading…
Neural networks for blind-source separation of Stromboli explosion quakes
Independent component analysis (ICA) is used to analyze the seismic signals produced by explosions of the Stromboli volcano. It has been experimentally proved that it is possible to extract the most significant components from seismometer recorders. In particular, the signal, eventually thought as g...
Saved in:
Published in: | IEEE transaction on neural networks and learning systems 2003-01, Vol.14 (1), p.167-175 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Independent component analysis (ICA) is used to analyze the seismic signals produced by explosions of the Stromboli volcano. It has been experimentally proved that it is possible to extract the most significant components from seismometer recorders. In particular, the signal, eventually thought as generated by the source, is corresponding to the higher power spectrum, isolated by our analysis. Furthermore, the amplitude of the source signals has been found by using a simple trick and so overcoming, for this specific case, the classical problem of ICA regarding the amplitude loss of the separated signals. |
---|---|
ISSN: | 1045-9227 2162-237X 1941-0093 2162-2388 |
DOI: | 10.1109/TNN.2002.806649 |